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ABSTRACT

Recent improvements in design verification strive to automate the
error-detection process and greatly enhance engineers’ ability to
detect the presence of functional errors. However, the process of
diagnosing the cause of these errors and fixing them remains dif-
ficult and requires significant ad-hoc manual effort. Our work
proposes improvements to this aspect of verification by present-
ing novel constructs and algorithms to automate the error-repair
process at the Register-Transfer Level (RTL), where most develop-
ment occurs. QOur contributions include a new RTL error model
and scalable error-repair algorithms. Empirical results show that
our solution can diagnose and correct errors in designs up to sev-
eral thousand lines of RTL code in minutes with significantly higher
accuracy than previous gate-level centered solutions. This demon-
strates the superior scalability and efficiency of our approach com-
pared to previous work.

1. INTRODUCTION

The dramatic increase in design complexity of modern electron-
ics challenges the ability of developers to ensure its functional cor-
rectness. While improvements in verification allow engineers to
find a larger fraction of design errors more efficiently, little effort
has been devoted to fixing such errors. As a result, debugging re-
mains an expensive and challenging task. To address this problem,
researchers have proposed techniques that automate the debugging
process, by locating the error source within a design and/or by sug-
gesting possible corrections. Although these techniques are suc-
cessful to some extent, they mainly focus on the gate level [6, 14,
19, 20, 21] or the transistor level [13]. However, most debugging
effort occurs in the Register-Transfer Level (RTL) description of a
circuit, where design activities are carried out. The lack of pow-
erful and automatic tools for error diagnosis and correction at this
level greatly reduces designers’ productivity when fixing even very
simple design errors. Leveraging gate-level diagnosis tools for the
RTL, however, is difficult because synthesis tools blur the mapping
between the RTL code and the gate-level netlist.

To address this problem, techniques that work directly at the RTL
have been developed recently. The first group of techniques [10, 15,
17] employ a software analysis approach that implicitly uses multi-
plexers (MUXes) to identify statements in the RTL code that are re-
sponsible for the errors. However, these techniques can return large
potential error sites and cannot automatically correct the errors.
The second group of techniques, such as [5], use formal analysis
of an HDL description and failed properties; because of that these
techniques can only be deployed in a formal verification frame-
work, and cannot be applied in a simulation-based verification flow
common in the industry today. In addition, these techniques cannot
repair identified errors automatically. Finally, the work by Staber
et al. [18] can diagnose and correct RTL design errors automat-
ically, but it relies on state-transition analysis and hence, it does
not scale beyond tens of state bits. In addition, this algorithm re-
quires a correct formal specification of the design, which is rarely
available in today’s design environments, because its development
is often as challenging as the design process itself. In contrast, the
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Figure 1: REDIR framework. Inputs to the tool are an RTL de-
sign (which includes one or more errors), test vectors exposing
the bug(s), and correct output responses for those vectors ob-
tained from a high-level simulation. Outputs of the tool include
REDIR symptom core (a minimum cardinality set of RTL sig-
nals which need to be modified in order to correct the design),
as well as suggestions to fix the errors.

most common type of specification available is a high-level model,
often written in a high-level language, which produces the correct
I/0 behavior of the system.

To develop a scalable and powerful RTL error diagnosis and cor-
rection system, we take a completely different approach by adopt-
ing hardware analysis techniques that are prevalent at the gate-level
into the RTL. This approach is significantly more accurate than pre-
vious software-based solutions in that we can analyze designs rig-
orously using formal hardware verification techniques. At the same
time, it is considerably faster and more scalable than gate-level di-
agnosis because errors are modeled at a higher level. Moreover,
it only requires test vectors and output responses, making it more
practical than existing formal analysis solutions. Finally, the novel
error model and increased accuracy of our approach allow our tech-
nique to provide insightful suggestions for correcting diagnosed er-
rors. Our main contributions include: (1) a new RTL error model
that explicitly inserts MUXes into RTL code for error diagnosis,
as opposed to previous solutions that use MUXes implicitly; (2)
innovative error-diagnosis algorithms using synthesis or symbolic
simulation; and (3) a novel error-correction technique using signal
behaviors (signatures) that is especially suitable for the RTL. Our
empirical results show that these techniques allow us to provide
highly accurate diagnoses very quickly.

We implemented our techniques in a framework called REDIR
(RTL Error Dlagnosis and Repair), highlighted in Figure 1. The
inputs to the framework include a design containing one or more
bugs, a set of test vectors exposing them, and the correct responses
for the primary outputs over the given test vectors (usually gener-
ated by a high-level behavioral model written in C, C++, SystemC,
etc). Note that we only require the correct responses at the primary
outputs of the high-level model and no internal values are required.
The output of the framework is a minimum cardinality set of RTL
signals that should be corrected in order to eliminate the erroneous



behavior. We call this set the symptom core. When multiple cores
exist, REDIR provides all of the possible minimal cardinality sets.
In addition, the framework suggests several possible fixes of the
signals in the symptom core to help a designer correct those signals.
Our empirical evaluation shows that REDIR can diagnose and cor-
rect multiple errors in design descriptions with thousands of lines of
Verilog code (or approximately 100K cells after synthesis), which
is approximately the size that an engineer actively works on. As
a result, REDIR can assist engineers in their everyday debugging
tasks and fundamentally accelerate the RTL design process.

The rest of the paper is organized as follows. In Section 2, we
describe the related work and provide the necessary background.
Section 3 and Section 4 describe our error diagnosis and correction
techniques, respectively. Empirical results are given in Section 5,
while Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

Our error-diagnosis algorithm converts the error-diagnosis prob-
lem into a Pseudo-Boolean (PB) problem, and then uses a PB solver
to perform the diagnosis and infer which design signals are respon-
sible for incorrect output behavior. In this section, we first define
Pseudo-Boolean problems, which are an extension of SATisifiabil-
ity problems. Next, we review gate-level diagnosis techniques,
which provide the foundation for our synthesis-based diagnosis,
and are used for comparison in our experimental results. We then
show the basic idea behind symbolic simulation, which we use as
an alternative, compact way to formulate the PB problem. Finally,
we briefly describe signature-based resynthesis techniques that will
be used in our error correction.

2.1 Pseudo-Boolean Problems

PB problems, also called 0-1 integer linear programming prob-
lems, are an extension of SATisfiability problems. PB constraints
are specified as an inequality with a linear combination of Boolean
variables: Copo,+Cip1 + ... +Cp—1 pu—1 > Cy, Where the variables
p;i are defined over the Boolean set {0, 1}. A PB problem allows
the use of an additional objective function, which is a linear ex-
pression that should be minimized or maximized under the given
constraints. A number of PB solvers have been developed recently
by extending existing SAT solvers (for instance, MiniSAT+ [9]).

2.2 Gate-level Error Diagnosis Techniques

Gate-level error diagnosis and correction techniques have been
studied extensively in the past. Early work often relies on specific
error models to simplify the problem, such as [1, 14]. Recently,
the power and effectiveness of gate-level error diagnosis have been
improved by the work of Smith et al. [19], which does not rely on
any error model. In Smith’s error-diagnosis technique, two types of
components are added to a given buggy netlist. These components
include (1) multiplexers, and (2) an error-cardinality constraint.
The purpose of the multiplexers is to model errors — when their
select lines are asserted, alternative sources drive the correspond-
ing internal wires to correct the output responses. The number of
asserted select lines is limited by the error-cardinality constraint,
which is implemented as an adder and a comparator: the adder
counts the number of asserted select lines, and its output is forced
to a value N using the comparator. The circuit is then converted
into Conjunctive Normal Form (CNF), and inputs and outputs are
subjected to additional constraints from input vectors and correct
output responses, obtained from a high-level model. Error diagno-
sis is then performed by iteratively solving the CNF using a SAT
solver with an increasing value for N, until a solution is found.

Note that Smith’s technique diagnoses errors in combinational
circuits only; to diagnose sequential circuits, Ali ef al. [2] extended

Smith’s work by unrolling the circuit, before the CNF conversion
step, M times, where M is the sequential length of the given trace.
Similar approach is used in our synthesis-based diagnosis. As we
show in our experimental results, however, our algorithm runs sig-
nificantly faster and is more accurate than Ali’s techniques, since
we model errors at the RTL instead of the gate level.

2.3 Logic vs. Symbolic Simulation

Logic simulation models the behavior of a digital circuit by prop-
agating scalar Boolean values (0 and 1) from primary inputs to pri-
mary outputs. For example, when simulating 2-input AND with
both inputs set to 1, the output 1 is produced. On the other hand,
symbolic simulation uses symbols instead of scalar values and pro-
duces Boolean expressions at the outputs [3, 4]. As a result, simu-
lating a 2-input XOR with inputs @ and b generates an expression “a
XOR b” instead of a scalar value. To improve scalability, modern
symbolic simulators employ several techniques, including approx-
imation, parameterization and on-the-fly logic simplification. For
example, with on-the-fly logic simplification, “0 XOR b” is sim-
plified to b thus reducing the complexity of the expression. Tra-
ditional symbolic simulators operate on a gate-level model of a
design; however, in recent years simulators operating on RTL de-
scriptions have been proposed [11, 12]. Symbolic simulation is an
alternative way to generate an instance of the Pseudo-Boolean con-
straint problem that we use in our error diagnosis framework.

2.4 Signature-based Resynthesis Techniques

Our error correction technique is based on signatures, where a
signature is essentially a signal’s partial truth table and represents
a signal’s behavior. The error-correction problem in REDIR is for-
mulated as follows: given a target signature and a collection of
candidate signatures, find a logic expression that generates the tar-
get signature using the candidate signatures. Since signatures are
partial truth tables, this process is essentially a logic synthesis step,
and any synthesis tool could be used for this purpose. Our previous
work that is specially tuned for resynthesizing from partial truth ta-
bles was published in [6]. The work proposes two techniques: one
involves an exhaustive search of the solution space, and finds so-
lutions with minimal number of logic operations (GDS). The other
method is approximate but faster (EGS).

3. RTL ERROR DIAGNOSIS

In this section, we describe our error-diagnosis techniques. First,
we explain our RTL error model, and then propose two diagnosis
methods that use either synthesis (Section 3.2) or symbolic simu-
lation (Section 3.3). Finally, we outline how hierarchical designs
should be handled.

3.1 Error Modeling

In our framework the error-diagnosis problem is represented with
(1) an RTL description containing one or more bugs that is com-
posed of variables (wire, registers, 1/0) and operations on those
variables; (2) a set of test vectors exposing the bugs; and (3) the
correct output responses for the given test vectors, usually gener-
ated by a high-level behavioral model. The objective of the error
diagnosis is to identify a minimal number of variables in the RTL
description that are responsible for the design’s erroneous behavior.
Moreover, by modifying the logic of those variables, the design er-
rors can be corrected. Each signal found to affect the correctness
of the design is called a symptom variable. Without minimization,
the set of symptom variables reported would include the root cause
of the bug and the cone of logic emanating from it: correcting all
the symptom variables on any cut across this cone of logic would
eliminate the bug. Therefore, by forcing the PB solver to minimize



the number of symptom variables, we return a solution as close to
the root cause of the erroneous behavior as possible. On the other
hand, if minimizing the number of symptom variables is not pre-
ferred (e.g. one-output circuits), a solution with a specified number
N of symptom variables can be found by converting the PBC to a
SAT instance with the total number of symptom variables set to N.
To model errors in a design, we introduce a conditional assign-
ment for each RTL variable, as shown in the example in Figure 2.
Note that these conditional assignments are used for error diagnosis
only and should not appear in the final synthesized design. How-
ever, they allow the REDIR framework to locate sites of erroneous
behavior in RTL, as we illustrate using a half_adder design shown
in Figure 2. Suppose that the output responses of the design are
incorrect because ¢ should be driven by “a & b” instead of “a |
b”. Obviously, to produce the correct output that we obtain from
a high-level model, the behavior of ¢ must be changed. To model
this situation, we insert a conditional assignment, “assign ¢, = Cg;
? ¢y : ¢”, into the code. Next, we replace all occurrences of ¢ in
the code with ¢,,, except when c is used on the left-hand-side of an
assignment. We call ¢y a select variable and cy a free variable
in this paper. Then, by asserting cy,; and using an alternative sig-
nal source, modeled by cf, We can force the circuit to behave as
desired. If we can identify the select variables that should be as-
serted and the correct signals that should drive the corresponding
free variables to produce correct circuit behavior, we can diagnose
and fix the errors in the design.
module half.adder(a, b, s, c);
input a, b;
output s, c;
assign s = a
assign ¢ = a
endmodule
module half_adder MUX_enriched(a, b, s, cu,
Sgels Cselr Sfr Cf)i
input a, b, Sy, Csls Sf, Cfj
output s,;, cu;

’

b
| b;

assign s = a b;
assign c = a | b;
assign s, = S5 ? Sy : S;
assign ¢, = Cy ? Cf : Cj
endmodule
Figure 2: An RTL error-modeling code example: mod-

ule half_ adder shows the original code, where c is erro-
neously driven by “a | b” instead of “a & b”; and module
half_adder MUX _enriched shows the MUX-enriched version.
The differences are marked in boldface.

The procedure to introduce a conditional assignment for a de-
sign variable v is called MUX-enrichment (since conditional as-
signments are conceptually multiplexers), and its pseudocode is
shown in Figure 3. It should be performed on each internal sig-
nal, defined in the circuit, including registers. The primary inputs,
however, should not be MUX-enriched since by construction they
cannot have erroneous values. It also should be noted that for hi-
erarchical designs the primary inputs of a module may be driven
by the outputs of another module and, therefore, may assume er-
roneous values. To handle this situation, we insert conditional as-
signments into the hierarchical modules’ output ports.

procedure MUX _enrichment (v)

1. create a new signal wire v, and new inputs v, and vg;;

2. add conditional assignment “v, = vy ? vy i V7

3. replace all occurrences of v that appear on the right-hand-side of
assignments (including outputs, if/case conditions, etc.) with v,;

Figure 3: Procedure to insert a conditional assignment for a
signal in an RTL description for error-modeling.

3.2 Diagnosis with Synthesis

After the error-modeling constructs have been inserted into a de-
sign, error diagnosis is used to identify the minimal number of se-
lect variables that should be asserted along with the values of their
corresponding free variables to produce the correct circuit behav-
ior. In this section we present an error diagnosis technique that
uses synthesis and circuit unrolling. In contrast with existing gate-
level diagnosis techniques described in Section 2.2, our RTL error-
modeling constructs are synthesized with the design, which elimi-
nates the need to insert multiplexers at the gate level. In this way,
the synthesized netlist faithfully preserves the constructs inserted
at the RTL, enabling accurate RTL error diagnosis. This is sig-
nificantly different from diagnosing design errors at the gate level,
since synthesis is only used to generate Boolean expressions be-
tween RTL variables, and the synthesized netlist is not the target
of the diagnosis. As a result, our diagnosis method has a much
smaller search space and runs significantly faster than gate-level
techniques, as we show in our experimental results.

Procedure syn_based_diagnosis(designCNF,c,inputs,out puts);

1 CNF =unroll designCNF ¢ times;

2 connect all select variables in CNF to those in the first cycle;
3 constrain PI/PO in CNF using inputs/out puts;

4 PBC =CNF, min( Y. select variables);

5 return solution= PB-Solve(BPC);

Figure 4: Procedure to perform error diagnosis using synthesis
and circuit unrolling.

Figure 4 outlines the algorithm for synthesis-based error diagno-
sis. Before the procedure is called, the design is synthesized and its
combinational portion is converted to CNF format (designCNF).
Other inputs to the procedure include the length of the bug trace,
¢, as well as the test vectors (inputs) and their correct output re-
sponses (out puts). To make sure that the diagnosis applies to all
simulation cycles, the algorithm connects the select variables for
each unrolled copy to the corresponding CNF variables in the first
copy. On the other hand, free variables for each unrolled copy of
the circuit are independent. When a solution is found, each asserted
select variables is a symptom variable, and the solution for its cor-
responding free variable is an alternative signal source that can fix
the design errors. Note that if state values over time are known,
they can be used to constrain the CNF at register boundaries, reduc-
ing the sequential error-diagnosis problem to combinational. The
constructed CNF, along with the objective to minimize the sum of
select variables, forms a Pseudo-Boolean Constraint (PBC). Error
diagnosis is then performed by solving the PBC.

3.3 Diagnosis with RTL Symbolic Simulation

In this section we propose an alternative error-diagnosis tech-
nique that scales further than the synthesis-based technique. We
achieve this by performing symbolic simulation directly on the RTL
representation and generating Boolean expressions at the primary
outputs for all simulated cycles. The outputs’ Boolean expressions
are used to build a Pseudo-Boolean problem’s instance, that is then
handed over to a PB solver for error diagnosis.

Although RTL symbolic simulators are not yet commonly avail-
able in the industry, effective solutions have been proposed in re-
cent years in the literature [11, 12]. Moreover, because of the scal-
ability advantages of performing symbolic simulation at the RTL
instead of the gate level, commercial-quality solutions are starting
to appear. For our empirical validation we used one such experi-
mental RTL symbolic simulator [22].

Figure 5 illustrates our novel procedure that uses symbolic sim-
ulation and PB solving. We assume that the registers are initialized
to known values before the procedure is invoked. We also assume



that the circuit contains n MUX-enriched signals named v;, where
i = {1..n}. Each v; has a corresponding select variable v; ;; and a
Jfree variable v;_y. There are o primary outputs, named PO j, where
Jj=1{1..0}. We use subscript “@” to prefix the cycle during which
the symbols are generated. For each primary output j and for each
cycle t we compute expression PO je; by symbolically simulating
the given RTL design, and also obtain correct output value CPO j@;
from the high-level model. The inputs to the procedure are the RTL
design (design), the test vectors (test _vectors), and the correct out-
put responses over time (CPO).

Procedure sim_based_diagnosis(design,test _vectors,CPO);
Vi, 1 <i<n, V= new_symbol();
fort = 1 to ¢ begin // Simulate ¢ cycles

PI =test_vector at cycle t;

Vi, 1 <i<n,vije,=new-symbol();

PO@; = simulate(design);
end
PBC = \}_; Ni—1(POje:= CPOja;), min(L_ | Vie);
8  return solution= PB_Solve(PBC);

NN R W=

Figure 5: Procedure to perform error diagnosis using symbolic
simulation. The boldfaced variables are symbolic variables or
expressions, while all others are scalar values.

In the algorithm shown in Figure 5, a symbol is initially created
for each select variable (line 1). During the simulation, a new sym-
bol is created for each free variable in every cycle, and test vectors
are applied to primary inputs, as shown in lines 2-4. The reason for
creating only one symbol for each select variable is that a condi-
tional assignment should be either activated or inactivated through-
out the entire simulation, while each free variable requires a new
symbol at every cycle because the value of the variable may change.
As a result, the symbols for the select variables are assigned out-
side the simulation loop, while the symbols for the free variables
are assigned in the loop. The values of the free variables can be
used as the alternative signal source to produce the correct behav-
ior of the circuit. After simulating one cycle, a Boolean expression
for all of the primary outputs are created and saved in PO, (line
5). After the simulation completes, the generated Boolean expres-
sions for all the primary outputs are constrained by their respective
correct output values and are ANDed to form a PBC problem as line
7 shows. In order to minimize the number of symptom variables,
we minimize the sum of select variables, which is also added to
the PBC as the objective function. A PB solver is then invoked to
solve the formulated PBC, as shown in line 8. In the solution, the
asserted select variables represent the symptom variables, and the
values of the free variables represent the alternative signal sources
that can be used to correct the erroneous output responses.

Below we present an example of a buggy design to illustrate the
symbolic simulation-based error-diagnosis technique.

Example 1. Assume that the circuit shown in Figure 6 contains
an error: signal g; is erroneously assigned to expression “rl | r2”
instead of “r1 & r2”. Conditional assignments, highlighted in bold-
face, have been inserted into the circuit using the techniques de-
scribed in Section 3.1. For simplicity reasons, we do not include
the MUXes at the outputs of registers I and r2. The trace that ex-
poses the error in two simulation cycles consists of the following
values for inputs {I1, I2}: {0, 1}, {1, 1}. When the same trace
is simulated by a high-level behavioral model, the correct output
responses for {O1, 02} are generated: {0, 0}, {1, 0}. Besides
these output responses, no addition information, such as values of
internal signals and registers, is required. We annotate the symbols
injected during the simulation by their cycle numbers using sub-
scripts. The Boolean expressions for the primary outputs for the
two cycles of simulation are:

Ol,@1=0lsy ? Olser : Hle1 | (gl ? glei : 0)]

02,@1= 024 ? 02@1 : [R@1 & (gl ? glfai : 0)]

01,@2=0lyy ? Olfar : {Il@2 | [gls ? glfe@2 : (le1 & 12@1)]}
02,@2= 024 ? 02f@2 : {Re2& [glser ? glf@2 : (@1 & Re1)]}
Since the primary inputs are scalar values, the expressions can be
greatly simplified during symbolic simulation. For example, we
know that 11, = 1; therefore, O1, @7 can be simplified to Olg,; ?
Oly@z : 1. As aresult, the Boolean expressions actually generated
by the symbolic simulator are:

Ol,@1=0ly ? Olrer : (glser ? glfer : 0)

02,@1= 0251 ? O2f@1 : (glser ? glf@i1 : 0)

Ol,@2=Olyy ? Olsay : 1

02,@2= 0251 ? O2f@2 : (glser ? glf@2 : 0)

To perform error diagnosis, we constrain the output expressions us-
ing the correct responses, and then construct a PBC as follows:
PBC = (01,1 =0) A (02p@1 = 0) A (Olpez =1) A (024@2 =0),
min(Olgy + 02 + glser)-

One possible solution of this PBC is to assert gl ,;, which provides
a correct symptom core.

module example(clk, Il1, I2, 0O1,, 02,, glg;, Olg,
024, gly, Oly, 02f);

input I1, I2, glg;, Olg, 02, gly, Oly, 02f

output 01,, 02,;

reg rl, r2;

initial begin rl= 0; r2= 0; end

always @(posedge clk) begin

rl= I1; r2= 12;

end

assign gl = rl | r2;

assign 01 I1 | gl,;

assign 02 = I2 & gl,;

assign gl,= gly ? gl; : gl;
assign 01l,= Oly ? Oly : O1;
assign 02,= 02y ? 02y : 02;
endmodule

Figure 6: Design for the example. Wire g1 should be driven by
“r1 & r2”, but it is erroneously driven by “r1 | r2”. The changes
made during MUX-enrichment are marked in boldface.

3.4 Handling Hierarchical Designs

Current designs often have hierarchical structures to allow the
circuit to be decomposed into smaller blocks and thus reduce its
complexity. In this subsection we discuss how the MUX-enriched
circuit should be instantiated if it is encapsulated as a module in
such a hierarchical design.

The algorithm to insert MUXes into a single module m is shown
in Figure 3. If m is instantiated inside of another module M, how-
ever, MUX-enrichment of M must include an extra step where new
inputs are added to all instantiations of m. Therefore, for hierar-
chical designs, the insertion of conditional assignments must be
performed bottom-up: MUX-enrichment in a module must be exe-
cuted before it is instantiated by another module. This is achieved
by analyzing the design hierarchy and performing MUX-enrichment
in a reverse-topological order.

It is important to note that in hierarchical designs, the select vari-
ables of instances of the same module should be shared, while the
free variables should not. This is because all instances of the same
module will have the same symptom variables. As a result, select
variables should share the same signals. On the other hand, each in-
stance is allowed to have different values for their internal signals;
therefore, each free variable should have its own signal. However,
it is possible that a bug requires fixing only one RTL instance while
other instances of the same module can be left intact. This situa-
tion requires generation of new RTL modules and is currently not
handled by our diagnosis techniques.



4. RTL ERROR CORRECTION

The RTL error-correction problem is formulated as follows: given
an erroneous RTL description of a digital design, find a variant de-
scription for one or more of the modules that compose it so that
the new design presents a correct behavior for the errors, while
leaving the known-correct behavior unchanged. Although many
error-repair techniques exist for gate-level designs, very few stud-
ies focus on the RTL. One major reason is the lack of logic repre-
sentations that can support the logic manipulation required during
RTL error correction. For example, the logic of a signal in a gate-
level netlist can be easily represented by BDDs, and modifying the
function of the signal can be supported by the manipulation of its
BDDs. However, most existing logic representations cannot be eas-
ily applied to an RTL variable. This problem is further exacerbated
by the fact that an RTL module may be instantiated multiple times,
creating many different functions for an RTL variable depending
on where it is instantiated.

In [6] we proposed a framework for gate-level error correction.
Our approach utilizes only signatures, which can be easily calcu-
lated via simulation, making our techniques especially suitable for
RTL error correction. However, techniques in [6] could be applied
only to combinational circuits, and could handle design hierarchies.
To support the error-correction requirements at the RTL, where
most designs contain hierarchies and are sequential, we propose
a new error-correction scheme based on similar concepts. In this
section, we first describe the baseline error-correction technique
that is easier to understand. Next, we show how signatures should
be generated at the RTL to handle hierarchical and sequential de-
signs. Finally, we provide some insights that we obtained during
the implementation of our system.

4.1 Baseline Error Correction Technique

For a flattened combinational design, error correction is performed
as follows: (1) signatures of RTL variables are generated using sim-
ulation; (2) error diagnosis is performed to find a symptom core;
(3) signatures of the symptom variables in the symptom core are re-
placed by the values of their corresponding free variables; and (4)
synthesis is applied to find logic expressions generating the signa-
tures of the symptom variables. By replacing the expressions that
generate the functions of the symptom variables with those new
expressions, design errors can be corrected.

4.2 Hierarchical and Sequential Designs

In a flattened design, each RTL variable represents exactly one
logic function. In a hierarchical design, however, each variable may
represent more than one logic function. Therefore, we devise the
following techniques to construct the signatures of RTL variables.
For clarity, we call a variable in an RTL module a module variable
and a variable in an instance generated by the module an instance
variable. A module variable may generate multiple instance vari-
ables if the module is instantiated several times.

In RTL error correction, we modify the source code of the mod-
ules in order to correct the design’s behavior. Since changing an
RTL module will affect all the instances produced by the module,
we concatenate the simulation values of the instance variables de-
rived from the same module variable to produce the signature for
the module variable. This way, we can guarantee that a change in
a module will affect instances in the same way. Similarly, we con-
catenate the signatures of the module variable at different cycles
for sequential error correction. A signature-construction example
is given in Figure 7. Note that to ensure the correctness of error
repair, the same instance and cycle orders must be used during the
concatenation of signatures for all module variables.

Design:
module top;
child cl1(), c2(), c3();
endmodule
module child;
wire v;
endmodule
Simulation values:
Cycle 0: top.cl.v =0, top.c2.v =0, top.c3.v=1
Cycle 1: top.cl.v =1, top.c2.v = 0, top.c3.v=0
Constructed signature for RTL error correction:
clv 2v 3v clyv c2v 3wy

ASNASNASNASNASN AN
chidv=1 0 0 0 0 1
cycle 1 cycle 0

Figure 7: Signature-construction example. Simulation values
of variables created from the same RTL variable at all cycles
should be concatenated for error correction.

Example 2. Using the same circuit as Example 1. The values re-
turned by the PB solver for gl r@g and gl r@ are both 0. Since the
inputs to g; are {0, 0} and {0, 1} for the first two cycles, the correct
expression for g; should generate 0 for these two inputs. RTL error
correction returns the following new logic expressions that can fix
the error: gl = r1&r2, gl = rl, etc. Note that although the cor-
rect fix is returned, the fix is not unique. In general, longer traces
containing various test vectors will identify the error with higher
precision and suggest better fixes than short ones.

4.3 Implementation Insights

Fixing errors involving multi-bit variables is more difficult than
fixing errors involving only one-bit variables because different bits
in the variable may be generated differently. To solve this prob-
lem, we allow the user to insert a conditional assignment for each
bit in the variable. Alternatively, REDIR can also be configured to
consider only the least-significant bit when performing error cor-
rection. This is useful when the variable is considered as a whole.

In synthesis-based error diagnosis, we observe that it is difficult
to identify the wires derived from the same RTL variable in a syn-
thesized netlist. To overcome this problem, we add the outputs of
inserted conditional statements to the primary outputs of the MUX-
enriched modules to obtain the simulated values of the RTL vari-
ables. To improve our error-correction quality, we utilize observ-
ability don’t-cares in our synthesis-based approach by simulating
the complement signatures of symptom variables and observe the
changes at primary outputs (including inputs to registers).

S. EXPERIMENTAL RESULTS

In our experiments, we evaluated the performance of the tech-
niques described in this paper with a range of Verilog benchmarks.
We used a proprietary Perl-based Verilog parser to insert condi-
tional assignments into RTL code. Synthesis-based diagnosis was
implemented using OpenAccess 2.2 and OAGear 0.96 [24] with
RTL Compiler v4.10 from Cadence as the synthesis tool. For simu-
lation-based diagnosis, we adopted an experimental RTL symbolic
simulator, Insight 1.4, from Avery Design Systems [22]. For ef-
ficiency, we implemented the techniques described in [9] to con-
vert PB problems to SAT problems and adopted MiniSAT as our
SAT solver [8]. All the experiments were conducted on an AMD
Opteron 880 (2.4GHz) Linux workstation with 16GB memory. The
designs under test included several circuits selected from Open-
Cores [23] (Pre_norm, MD5, MiniRISC, and CF_FFT), the picoJava-
II microprocessor (Pipe), DLX, and Alpha. Bugs (described in Ta-
ble 2) were injected into these benchmarks, with the exception of



Benchmark | Description #Flip- | Trace type Gate-level [2, 19] RTL (Ours)
flops #Cells | #MUXes | #Lines | #Assign

Pipe Part of PicoJava pipeline control unit 2 Constrained-random 55 72 264 31

Pre_norm Part of FPU 71 Constrained-random 1877 1877 270 43
MD5 MDS5 full chip 910 Direct test 13311 13313 438 37
MiniRISC MiniRISC full chip 887 Direct test 6402 6402 2013 43
CF_FFT Part of the CF_FFT chip 16,638 | Constrained-random | 126532 126560 998 223
DLX 5-stage pipeline CPU running MIPS-Lite ISA | 2,062 | Constrained-random | 14725 14727 1225 84
Alpha 5-stage pipeline CPU running Alpha ISA 2,917 | Constrained-random | 38299 38601 1841 134

Table 1: Characteristics of benchmarks. ‘#MUXes” is the number of MUXes inserted by gate-level diagnosis [2, 19] for comparison,

and ‘“#Assign” is the number of conditional assignments inserted by our solution.

DLX and Alpha, which already included bugs. We used constrained-
random simulation to generate bug traces for Pipe, Pre_norm, and
CF_FFT, while the bug traces for the rest of the benchmarks were
generated using the verification environment shipped with the de-
signs. Traces to expose bugs in DLX and Alpha were given by
the verification engineer and were generated using a constrained-
random simulation tool. The characteristics of these benchmarks
are summarized in Table 1. In the table, “RTL #Lines” is the num-
ber of lines of RTL code in a design, and “Gate-level #Cells” is the
cell count of the synthesized netlist. To compare our results with
previous work, we implemented the algorithms for gate-level error
diagnosis in [2, 19]. In the table, we list the number of MUXes
inserted by their techniques in column “#MUXes”, and the number
of conditional assignments under “#Assign”.

Bench- | Bug
mark ID
Pipe
Pre_
norm

Description

One signal inverted

Reduced OR replaced by reduced AND

One signal inverted

One 26-bit bus MUX select line inverted

Bug A + Bug B

Bug A + Bug B + Bug C

Incorrect operand for a 32-bit addition
Incorrect state transition

Bug B with a shorter trace

Incorrect RHS for a 11-bit value assignment
One signal inverted

SLL inst. does shift the wrong way

SLTIU inst. selects the wrong ALU operation
JAL inst. leads to incorrect bypass from MEM stage
Incorrect forwarding for ALU+IMM inst.
Does not write to reg31

RT reads lower 30 bits only

If RT =7 memory write is incorrect

Write to zero-reg succeeds if rdb_idx =5
Forwarding through zero reg on rb

Squash if source of MEM/WB = dest. of ID/EX and
instr. in ID is not a branch

Table 2: Description of bugs in benchmarks. DLX and Alpha
include native bugs, while the others were manually injected.

MD5

MRISC
CF_FFT
DLX

Alpha
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5.1 Synthesis-based Error Diagnosis

In this experiment, we performed combinational and sequential
error diagnosis using the synthesis-based techniques described in
Section 3.2. For comparison with previous work, we also synthe-
sized the benchmarks and performed gate-level error diagnosis us-
ing Smith’s and Ali’s [2, 19] techniques described in Section 2.2.
The results are summarized in Table 3. Recall that a symptom core
suggests a possible set of signals to modify for correcting the de-
sign, and it includes one or more symptom variables. In all our ex-
periments, we found that the reported symptom cores included the
root causes of errors for all benchmarks. In other words, REDIR
accurately pointed out the signals that exhibited incorrect behavior.
Comparison between RTL and gate-level error diagnosis: this
comparison clearly indicates that diagnosing functional errors at

the RTL has significant advantages over the gate level: shorter run-
time and more accurate diagnoses. As Table 3 shows, most errors
can be diagnosed using our techniques within a few minutes, while
identifying the same errors at the gate level takes more than 48
hours in many cases. One major reason for this is that the num-
ber of possible symptom variables (error sites), i.e., internal netlist
signals responsible for the bug, is significantly smaller in RTL diag-
nosis, as can be observed from the numbers of inserted conditional
assignments shown in Table 1. This is due to the fact that one
simple RTL statement may be synthesized into a complex netlist,
which proliferates the number of error sites. For example, a state-
ment like “a = b + ¢” creates only one symptom variable at the
RTL. Its synthesized netlist, however, may contain hundreds of er-
ror sites, depending on the implementation of the adder and the
bit-width of the signals. The small number of potential symptom
variables at the RTL significantly reduces the search space for PB
or SAT solvers and provides very short diagnosis runtime. In addi-
tion, one bug at the RTL may transform into multiple simultaneous
bugs at the gate level. Since runtime of error diagnosis grows sub-
stantially with each additional bug [19], being able to diagnose er-
rors at the RTL avoids the expensive multi-error diagnosis process
at the gate level. We also observed that although the runtime of
the RTL error diagnosis still increases with each additional bug, its
growth rate is much smaller than the growth rate at the gate level.
For example, as Table 3 shows, the runtime of the gate-level diag-
nosis for Pre_norm(A) and (D), which combined (A) and (B), was
63.6 and 88.7 seconds, respectively. For RTL diagnosis, the run-
time was 13.2 and 13.8 seconds, respectively. These results clearly
indicate that adopting gate-level techniques into RTL is the correct
approach: it provides excellent accuracy because formal analysis
can be performed, yet it does not have any drawback common in
gate-level analysis in that it is still highly scalable and efficient.
This is achieved by our new constructs that model errors at the RTL
instead of the gate level. These results also demonstrate that trying
to diagnose RTL errors at the gate level and mapping the results
back to RTL is ineffective and inefficient, not to mention the fact
that such a mapping is usually difficult to find.

Comparison between combinational and sequential diagnosis:
the difference between combinational and sequential diagnosis is
that sequential diagnosis only uses output responses for constraints,
while combinational is allowed to use state values. As Table 3
shows, the runtime of combinational diagnosis is typically shorter,
and the number of symptom cores is often smaller. In DLX(D),
for example, the combinational technique runs significantly faster
than sequential, and returns only three cores, while sequential re-
turns nine. The reason is that combinational diagnosis allows the
use of state values, which provide additional constraints to the PB
instance. As a result, the PB solver can find solutions faster, and the
additional constraints further localize the bugs. Being able to uti-
lize state values is especially important for designs with very deep
pipelines, where an error may be observed hundred cycles later. For
example, the error injected into CF_FFT requires more than 40 cy-



Bench- Bug Bug traces Gate-level diagnosis [2, 19] RTL diagnosis (Our work)
mark D #tra- #ey- Combinational Sequential Combinational Sequential
ces cles Errors found Runtime Errors found Runtime Errors found Runtime Errors found Runtime
#Sites | #Cores (sec) #Sites | #Cores (sec) #Symp. | #Cores (sec) #Symp. | #Cores. (sec)
Pipe A 32 200 1 1 6.9 1 1 7.1 1 1 6.0 1 1 6.0
Pre_ A 32 20 1 1 51.1 1 1 63.6 1 1 13.2 1 1 13.2
norm B 32 20 1 3 41.6 1 4 46.7 I 1 114 1 2 134
C 32 20 Time-out (48 hours) with > 10 error sites 1 1 11.4 1 1 114
D 32 20 2 3 [ 733 2 ] 4 88.7 2 T 124 2 2 13.8
E 32 20 Time-out (48 hours) with > 8 error sites 3 2 13.9 3 4 17.4
MD5 A 1 200 Time-out (48 hours) with > 6 error sites 1 1 83.3 1 3 173.2
B 1 200 T ] 2 [ 10,980 T ] 4 41,043 1 1 429 1 2 110.1
C I 50 T 3 [ 2731 T [ 28 17,974 I 1 14.1 1 6 49.8
MRISC A 1 500 States unavailable Time-out (48 hours) States unavailable 1 2 32.0
CF_FFT A 32 15 1 | 1 | 109,305 Trace unavailable 1 4 364.8 Trace unavailable
DLX A 1 150 Time-out (48 hours) Out of memory 1 1 41.2 1 3 220.8
B 1 68 (178) 1 20 15,261 Out of memory 1 4 54.8 1 17 1886.3
C I 47 (142) 1 45 11,436 1 170 34,829 I 5 15.8 1 11 104.0
D I 77 (798) I 6 18,376 I 6 49,787 I 3 275 I 9 2765.1
E I 49 (143) I 12 9743.5 I 193 19,621 I 4 19.1 I 12 105.2
F 1 188 1 10 15,184 Out of memory 1 2 67.8 1 2 4574
G 1 30 (1080) 1 9 4160.1 Trace unavailable 1 1 11.3 Trace unavailable
Alpha A 1 70(256) Time-out (48 hours) 1 5 127.4 1 9 525.3
B I 83(1433) Time-out (48 hours) I 5 I11.6 1 5 368.9
C I 150(9950) Out of y I 3 122.3 I 3 250.5

Table 3: Synthesis-based error diagnosis results. For gate level, ‘“#Sites” is the number of error sites reported in each core, and for
RTL “4#Symp.” is the number of symptom variables in each core. ‘#Cores” is the total number of symptom cores returned by either
approach. The results show that RTL diagnosis outperforms gate-level diagnosis in all the benchmarks: the runtime is shorter, and
the diagnosis is more accurate. Bug traces for several DLX/Alpha benchmarks have been minimized before diagnosis, and their

original lengths are shown in parentheses.

cles to propagate to any primary output, making the use of sequen-
tial diagnosis difficult. In addition, bugs that are observed in design
states can only be diagnosed when state values are available, such
as DLX(G). On the other hand, sequential diagnosis is important
when state values are unavailable. For example, the bug injected
into the MiniRISC processor changed the state registers, damag-
ing correct state values. In practice, it is also common that only
responses at primary outputs are known. Therefore, being able to
diagnose errors in combinational and sequential circuits is equally
important, and both are supported by REDIR.

The comparison between MD5(B) and MD5(C) shows that there
is a trade-off between diagnosis runtime and quality: MD5(C) uses
a shorter trace and thus requires shorter diagnosis runtime; how-
ever, the number of symptom cores is larger than that returned by
MD5(B), showing that the results are less accurate. The reason
is that longer traces usually contain more information; therefore,
they can better localize design errors. One way to obtain short yet
high-quality traces is to perform bug trace minimization before er-
ror diagnosis. Such minimization techniques can remove redundant
information from the bug trace and greatly facilitate error diagno-
sis. We adopted one such technique [7] to minimize the traces for
DLX and Alpha, and the length of the original traces is shown in
parentheses. In general, one trace is enough to localize the errors
to a small number of symptom cores, while additional traces may
further reduce this number.

5.2 Simulation-based Error Diagnosis

In this experiment, we performed simulation-based diagnosis us-
ing the algorithm described in Section 3.3 with Insight, an experi-
mental RTL symbolic simulator from [22]. Benchmarks Pipe and
CF_FFT were used in this experiment. Simulation took 23.8 and
162.9 seconds to generate SAT instances for these benchmarks, re-
spectively. The SAT solver included in Insight then solved the in-
stances in 1 and 723 seconds respectively, and it successfully iden-
tified the design errors. Note that currently, the SAT solver only
returns one, instead of all possible symptom cores. Although the
runtime of simulation-based approach is longer than the synthesis-
based method, it does not require the design to be synthesized in
advance, thus saving the synthesizer runtime.

Bench-mark | Bug | #Cores | Resyn. #Fixes Runtime
mark D fixed method (sec)
Pipe A 1 GDS 2214 1.0
Pre_norm A 1 GDS 4091 1.1
B 1 GDS 4947 2.4
C 1 GDS 68416 5.6
D 2 GDS 79358 7.1
E 3 GDS 548037 41.6
MDS5 A 1 GDS 33625 4.1
B 0 GDS 0 3.86
CF_FFT A 3 GDS 214800 141.6
DLX A 0 GDS 0 1.3
B 3 GDS 5319430 111.2
C 5 EGS 5 1.6
D 3 EGS 3 1.6
E 4 EGS 4 1.4
F 2 EGS 2 2.9
G I GDS 51330 0.7
Alpha A 5 EGS 5 7.9
B 4 EGS 4 10.4
C 3 EGS 3 8.5

Table 4: Error correction results. Combinational diagnosis is
used in this experiment.

5.3 Error Correction

In our error-correction experiment, we applied the techniques de-
scribed in Section 4 to fix the errors diagnosed in Table 3. We used
combinational diagnosis in this experiment, and corrected the error
location using the synthesis tool in [6]. We summarized the results
in Table 4 where we indicate which of the two synthesis techniques
in [6] we used, either GDS or EGS (see Section 2.4). In the ta-
ble, “#Cores fixed” is the number of symptom cores that can be
corrected using our error-correction techniques, and “#Fixes” is the
number of ways to fix the errors. We applied GDS first in the exper-
iment, and observed that GDS often returns a large number of valid
fixes that can correct the design errors. One reason is that GDS per-
forms exhaustive search to find new logic expressions; therefore, it
may find many different ways to produce the same signal. For ex-
ample, “A-B” and “A - (A ® B)” are both returned even though they
are equivalent. Another reason is that we only diagnosed short bug
traces, which may produce spurious fixes: signatures of different



variables are the same even though their functions are different.
As a result, we only report the first 100 fixes in our implementa-
tion, where the fixes are sorted so that those with smaller number
of logic operations are returned first. Due to the exhaustive-search
nature of GDS, memory usage of GDS may be high during the
search, as are the cases for benchmarks DLX (C-F) and Alpha. In
these benchmarks, GDS ran out of memory, and we relied on EGS
to find fixes that can correct the errors. Since EGS only returns one
logic expression when fixing an error, the number of possible fixes
is significantly smaller.

Table 4 shows that we could not find valid fixes for benchmarks
MD5(B) and DLX(A). The reason is that the bugs in these bench-
marks involve multi-bit variables. For example, bug MDS5(b) is
an incorrect state transition for a 3-bit state register. Since in this
experiment we only consider the least-significant bits of such vari-
ables during error correction, we could not find a valid fix. This
problem can be solved by inserting a conditional assignment for
every bit in a multi-bit variable.

5.4 Discussion of Experimental Results

The error-diagnosis results show that our error-modeling con-
struct and diagnosis techniques can effectively localize design er-
rors to a small number of symptom variables. On the other hand,
our error-correction results suggest that options to repair the diag-
nosed errors abound. The reason is that the search space of error
correction is much larger than error diagnosis: there are various
ways to synthesize a logic function. As a result, finding high-
quality fixes for a bug requires much more information than pro-
viding high-quality diagnoses. Although this can be achieved by
diagnosing longer or more numerous bug traces, the runtime of
REDIR will also increase.

This observation shows that automatic error correction is a much
more difficult problem than automatic error diagnosis. In practice,
however, engineers often find error diagnosis more difficult than
error correction. It is common that engineers need to spend days or
weeks finding the cause of a bug. However, once the bug is iden-
tified, fixing it may only take a few hours. To this end, our error-
correction technique can also be used to facilitate manual error re-
pair, and it works as follows: (1) the engineer fixes the RTL code
manually to provide new logic functions for the symprom cores
identified by error diagnosis; and (2) REDIR simulates the new
functions to check whether the signatures of symptom cores can be
generated correctly using the new functions. If the signatures can-
not be generated by the new functions, then the fix is invalid. In
this way, engineers can check the correctness of their fixes before
running verification, which can accelerate the manual error-repair
process significantly.

The synthesis-based results show that our techniques can effec-
tively handle designs as large as 2000 lines of RTL code, which is
approximately the size that an engineer actively works on. Since
synthesis tools are available in most companies, REDIR can be
used by engineers everyday to facilitate their debugging process.
On the other hand, the simulation-based results suggest that our
techniques are promising. Once RTL symbolic simulators become
accessible to most companies, REDIR can automatically exploit
their simulation power to handle even larger designs.

6. CONCLUSIONS

In this paper we proposed several constructs and algorithms that
provide a fundamentally new way to diagnose and correct errors at
the RTL, including: (1) an RTL error modeling construct; (2) scal-
able error-diagnosis algorithms using Pseudo-Boolean constraints,
synthesis, and simulation; and (3) a novel error-correction tech-

nique using signatures. To empirically validate our proposed tech-
niques, we developed a novel verification framework, called REDIR.
To this end, our experiments with industrial designs demonstrate
that REDIR is efficient and scalable. In particular, designs up to a
few thousand lines of code (or 100K cells after synthesis) can be
diagnosed within minutes with high accuracy. Since our methods
only rely on correct output responses and support both combina-
tional and sequential circuits, they can be applied to various de-
signs in all mainstream verification flows. The superior scalability,
efficiency and accuracy ensure that REDIR can be used by engi-
neers in their everyday debugging tasks, which can fundamentally
change the RTL debugging process.
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