










cases. These results show that our methods can perform circuit
customization efficiently and effectively. In our experience, the
most useful properties are the signals proven to be constant
because they always simplify part of the logic in the circuit.
We also observed that these properties are valid due to the
constraints from the testbench instead of the design itself
because when running the testbench that allows all possible
instructions, these properties do not exist. This result shows
that our methodology can successfully mine properties from
the testbench and utilize them for design optimization.

In Table II we also show the number of applied properties
for each set of instructions. Note that set G1 only contains
NOP (no operation implemented using left-shift by 0 bits)
and is not practical. However, it shows an intereseting conrner
case — 97.6% logic can be removed when most functionality
of the circuit is not used.

In our second experiment, we applied our techniques to
DLX designs which were already optimized by [3]. The results
are summarized in Table III. Compared with the runtime in
Table II, runtime in this experiment became smaller because
the circuits have been optimized already, thus there were few
pairs of variables to check and fewer properties to extract.
However, the results show that even though the designs were
already optimized, we could still find optimizations that further
reduce circuit area, suggesting that our optimizations are
orthogonal to those provided by [3] and can provide additional
area reduction. To identify where the additional optimizations
were from, we performed a more detailed analysis, and the
results are shown in Table IV. From the results, we can see
that our methods reduced some combinational logic. However,
most of the area reduction was from sequential logic. This is an
area that [3] could not perform well: their methods are based
on code reachability analysis and tend to optimize combina-
tional logic, while ours can optimize both combinational and
sequential portions of the circuit.

TABLE III
DLX OPTIMIZED USING OUR METHODOLOGY AFTER OPTIMIZATIONS

FROM [3] IS PERFORMED.

Inst. Run #Pro- Opt. by [3] Further opt. by this work Slack
Gro- time per- Area Reduc- Area Reduc- time
up (s) ties (µm2) tion ratio (µm2) tion ratio (ns)
G1 0.20 174 7429.5 94.4% 5407.9 95.9% 8.07
G2 2.85 39 101353.4 24.0% 99552.5 25.4% 3.32
G3 3.37 24 116295.6 12.8% 108445.2 18.7% 3.41
G4 18.01 19 124339.6 6.8% 123226.1 7.6% 0.75
G5 34.49 19 130526.6 2.2% 129243.4 3.1% 0.12

TABLE IV
COMPARISON OF OPTIMIZATIONS ACHIEVED BY [3] AND OUR WORK.

Area after opt. from [3] (µm2)
Comb. logic Seq. logic Total

Inst. Group 52310.4 63985.2 116295.6
G1 Area after further opt. by our methodology (µm2)

Comb. logic Seq. logic Total
50329.6 58115.6 108445.2

Runtime comparison between our methods and [3] shows
that our runtime (within two minutes) is much shorter than that
in [3] (over an hour for most cases ). This comparison shows
that our methodology based on properties is more efficient than

code reachability analysis. On the other hand, a comparison
of area reduction between Table II and III shows that utilizing
either one of the optimization methods cannot achieve what
the combined methods provide. Therefore, it is best to apply
both techniques so that designs can be better optimized.

VI. CONCLUSION

Synthesis tools have evolved to a point where most designs
can be synthesized and optimized efficiently and effectively.
However, most tools only utilize design intention represented
in the RTL code and do not consider verification intention
encoded in the verification constructs such as testbenches or
assertions. Not being able to utilize the information from veri-
fication environment greatly limits optimization capabilities of
synthesis tools. This problem is especially serious for circuit
customization because most environment constraints are found
in the testbenches. To address this problem, we proposed
a methodology that utilizes functional assertions for design
optimization. In addition, we proposed a new technique that
extracts assertions from the design under the constraints in
the testbench. Experimental results show that our methods
can reduce design sizes after synthesis, and the optimization
is orthogonal to another optimization based on reachability
analysis [3]. These results show that our techniques can help
designers better address the circuit customization problem. In
the future, we plan to enhance our property miner to recognize
more types of properties. By utilizing more properties, more
design optimization opportunities can be exposed and utilized.

ACKNOWLEDGMENT

This research is supported by the Institute for Information
Industry, Taiwan under Grant 99-FS-C02.

REFERENCES

[1] K.-H. Chang, V. Bertacco, I. L. Markov and A. Mishchenko, “Logic Syn-
thesis and Circuit Customization Using Extensive External Don’t-Cares,”
ACM Transactions on Design Automation of Electronic Systems,,Vol. 15,
No. 3, Article 26, 2010

[2] K.-H Chang, V. Bertacco, and I. L. Markov, ”Customizing IP Cores
for System-on-Chip Designs Using Extensive External Don’t-Cares,”
DATE’09, pp. 582-585.

[3] H.-Z. Chou, K.-H. Chang and S.-Y. Kuo, ”Optimizing Blocks in an SoC
Using Symbolic Code-Statement Reachability Analysis” ASPDAC’10,
pp. 787-792.

[4] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy and D. Johnson,
”GoldMine: Automatic assertion generation using data mining and static
analysis” DATE’10, pp. 626 - 629.

[5] P.-H. Chang and L.-C. Wang, ”Automatic assertion extraction via sequen-
tial data mining of simulation traces” ASPDAC’10, pp. 607-612.

[6] L.-C. Wang, M. S. Abadir and N. Krishnamurthy, ”Automatic generation
of assertions for formal verification of PowerPC microprocessor arrays
using symbolic trajectory evaluation” DAC’98, pp. 534-537.

[7] R. E. Bryant, “Symbolic Simulation – Techniques and Applications,”
DAC’90, pp. 517-521

[8] A. Kolbl, J. Kukula and R. Damiano, “Symbolic RTL Simulation,”
DAC’01, pp. 47-52.

[9] A. Kolbl, J. Kukula, K. Antreich and R. Damiano, “Handling Special
Constructs in Symbolic Simulation,” DAC’02, pp. 105-110.

[10] H.-Z. Chou, I.-H. Lin, C.-S. Yang, K.-H. Chang and S.-Y. Kuo, “Enhanc-
ing Bug Hunting Using High-Level Symbolic Simulation,” GLSVLSI’09,
pp. 417-420.

[11] Insight, http://www.avery-design.com
[12] Bug UnderGround, http://bug.eecs.umich.edu
[13] http://www.cadence.com

89




