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Abstract 

The increasing complexity of integrated circuits pushes for more aggressive design 

optimizations, such as resetting only part of design registers, that can leave some registers 

in nondeterministic (X) states. Such Xs may invalidate the correctness of logic simulation 

due to X-optimism and X-pessimism, producing simulation waveforms that cannot be 

trusted. Although formal methods can resolve the nondeterminism problem, they are not 

scalable enough to handle today’s multi-million gate designs. To address this problem, we 

developed a scalable X-analysis methodology and successfully applied it to solve three real 

industrial problems — one identifies missing Xs in RTL designs while the other two 

remove incorrect Xs to repair gate-level simulation. 
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1  Introduction 

To design today’s multi-million gate circuits, aggressive optimizations are being used. For instance, to 

deal with the reset signal routing problem, one can reset only part of design registers and use software 

sequences, called reset sequences, to initialize the rest. This approach, however, creates new challenges in 

design verification because uninitialized registers will exhibit nondeterministic behavior. In particular, Xs 

are often used to represent the nondeterminism of uninitialized registers. However, as we will show in 

Section 2, logic simulation cannot handle Xs correctly. As a result, what designers see in the waveform 

may be inaccurate, resulting in bugs escaping verification. Although formal-verification techniques such as 

[4] can accurately handle the Xs, they are not scalable enough to handle today’s design sizes and long reset 

sequences. In addition, engineers may be unfamiliar with formal tools. To address these problems, we 

strive to develop a scalable methodology that leverages the proving power of formal methods while 

working seamlessly with the prevalent simulation-based verification flow. Our methodology, called eXact 

[3], utilizes the principle of most astonishment by pointing out only the issues that will surprise the 

engineers. More specifically, we identify problems in the simulation waveform that engineers are not aware 

of. This philosophy allows us to significantly reduce the amount of formal analysis without sacrificing 

analysis quality. To further improve the scalability of eXact, we intervene logic simulation with formal 

methods and apply novel partitioning techniques. By carefully integrating different verification methods, 

we make sure no bugs will be missed, although false negatives may become possible. We successfully 

applied eXact to resolve three industrial issues: one for finding unexpected Xs after reset and two for fixing 

gate-level logic simulation problems. With our methodology, simulation waveforms can be trusted again. 

In the rest of the paper we first provide relevant background. Next, we describe the X issues in detail and 

show how our methodology solves the problems. 

2  X-Pessimism and X-Optimism in Logic Simulation 

X-handling in logic simulation is inaccurate due to X-optimism and X-pessimism [2, 7, 8]: X-optimism 

incorrectly removes Xs while X-pessimism introduces unnecessary Xs. Take the code shown in Fig. 1(a) 

for example, if “a” is X, “out” can be either “b” or “c”, which should really be X. However, due to 

X-optimism in logic simulation, only one branch is considered and “out” will be equal to “c”. Fig. 1(b) 

shows another example where signal “out” should not be affected by “a” but is assigned X erroneously due 

to X-pessimism. 
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(a) X-optimism (b) X-pessimism 
 a = 1’bx;  a = 1’bx; b = 1’b1; c = 1’b1; 

 if (a)   out = b;  out = ( a & b ) | ( ∼a & c); 

 else     out = c;   

 result: out = c;  result: out = 1’bx; 

Figure 1: A simple example to show X-optimism and X-pessimism problems in logic simulation. 

3  Current Solutions for Handling X-Problems 

Recently, Kaiss et al. [6] proposed a SAT-based method for Sequence Equivalence Checking (SEC) 

without initial state information. Their idea is to compute reset sequences that can bring the circuit to a 

known state before SEC. However, their method focused on generating reset sequences instead of verifying 

the correctness of existing ones. In addition, scalability remains an issue due to the heavy use of formal 

methods. Haufe and Rogin [5] proposed a technique that utilizes automatic Register-Transfer Level (RTL) 

code transformation to avoid unexpected X-propagation. However, their method is based on templates and 

cannot handle all the RTL syntax. Another way to detect X-problems is to run gate-level simulation by 

assigning random values to Xs and then compare the results with RTL simulation. The major advantage of 

this approach is that existing verification infrastructures can be used. However, setting up gate-level 

simulation still needs time, and gate-level simulation is slow. In addition, once a bug is found, tracing the 

problem from gate-level back to the RTL can be difficult. 

To accurately handle Xs at the RTL, our preliminary work [4] proposed an X-analysis technique based 

on symbolic simulation which treats Xs as symbols and produces Boolean expressions in terms of symbols. 

Since each symbol represents an arbitrary value, it faithfully captures real hardware behavior. Take Fig. 1(a) 

for example, since the X in “a” is treated as a symbol, both conditions can be considered and the correct 

Boolean value for signal “out” can be produced: 

 

out = a ? b : c; 

To check whether the X in a can propagate to output out, our method first duplicates the design and then 

performs symbolic simulation. In the duplicated version, variables with Xs are replaced with new symbols, 

but other symbols remain the same. Next, a miter checks whether the outputs can be different. The built 

Boolean expression is shown below. A SAT solver then solves the problem: if a solution can be found, then 

the X can propagate to the output.  

 

out = a ? b : c;  

⇒ solve miter(out, out') 
out' = a' ? b: c; 

In the following sections we describe how we improve the scalability of this method to address industrial 

problems. 

4  Issue 1: Finding Reset Nondeterminism in RTL Designs 

Reset nondeterminism problems are caused by uninitialized registers in a design. Due to X-optimism, 

Xs may disappear in logic simulation and the nondeterminism problem can be missed by the engineer. 

Since our goal is to identify problems in the simulation waveform, we assume that waveforms produced by 

simulating the reset sequences are available. To perform X-analysis, we first replace all the Xs in 

uninitialized registers with symbols. We then symbolically simulate the design using the waveform as its 

stimulus. When Xs are encountered in the waveform, we replace them by new symbols at every input 

timestep. Finally, we use our formal X-analysis technique to find Xs in the design. If the formal technique 

can handle the whole design and the reset sequences, then the X-analysis problem is solved. However, this 

is impractical due to scalability issues of formal methods. Therefore, we propose three innovations to 

reduce the complexity of formal analysis. 
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4.1  Innovation 1: Utilizing the Principle of Most 

Astonishment 

The original X-analysis method [4] reports X problems in all the registers and primary outputs. 

However, if registers already have Xs in logic simulation, then engineers are already aware of them, and 

reporting the same problems again will not be helpful. While in many fields the principle of least 

astonishment is emphasized, in this work we found that the principle of most astonishment is actually more 

useful. Therefore, we propose to check only the registers that do not have Xs in logic simulation. In our 

experience, this approach can point out problems that catch designers’ attention right away. Runtime can 

also be reduced because fewer registers need to be checked. 

4.2  Innovation 2: Design Partitioning 

If formal X-analysis still cannot be performed with innovation 1, we apply innovation 2: design 

partitioning. Since it is difficult to predict the performance of formal analysis by statically analyzing the 

design, we propose an iterative approach based on trial-and-error and design hierarchy. To this end, one can 

start from the second level of hierarchy and run formal X-analysis on each block at the level. To estimate 

the runtime of each block, one runs a few cycles of the reset sequence and use its runtime to estimate the 

time required for analyzing the whole sequence. If runtime is still prohibitive for a block, one should go to 

the next level. This process repeats until blocks that can be efficiently analyzed are identified. We then use 

the waveform as the input stimulus to formally analyze each block. Finally, the logic between the top level 

and the partitioned blocks is analyzed by applying stimulus not only from the top module but also from the 

outputs of the blocks that have been partitioned away.  

Since logic simulation is inaccurate when handling Xs, our use of waveforms will create stimulus that 

may be both over-constrained and under-constrained
1
. It may be over-constrained if there are X-problems 

in the block that fans out to the current one and the Xs are masked due to X-optimism, and it may be 

under-constrained because we treat each X as an independent symbol. An under-constrained example is 

shown in Fig. 2(b), and an over-constrained example is shown in Fig. 2(c). 

     
(a)                        (b)                                (c) 

Figure 2: An example to show over-/under-constrained characteristics using stimulus from waveforms and 

design partitioning. In symbolic simulation, Xs in waveform are replaced by symbols (denoted as sn). Logic 

and symbolic simulation results are shown using “logic/symbolic”. (a) RTL code for blocks B1 and B2. (b) 

False alarm at AND gate’s output after partitioning due to under-constrained inputs caused by replacing Xs 

with new symbols. (c) Missed X at B2’s output after partitioning due to over-constrained inputs caused by 

X-optimism in B1. This X-problem will be caught when verifying partition 1.  

Our use of waveforms as inputs may produce false alarms but will not miss bugs. False alarms exist 

because we treat each X as an independent symbol. As Fig. 2(b) shows, doing so reduces the chance to 

eliminate the Xs. From our case studies, however, this is not a problem because we can eliminate most of 

the false alarms by having the designers quickly inspect the report. Bugs may be missed because 

over-constrained conditions in waveforms are caused by X-optimism when simulating the block that has 

                                                           
1
 Over-constrained means legal inputs are not generated, while under-constrained means illegal inputs 

are generated. 
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X-problems. Therefore, as long as the problematic block is also checked, we will find unexpected Xs at its 

registers or outputs and discover the problem. Since in our methodology we check all the blocks, we will 

not miss X-problems. In Fig. 2(c), the X in B2’s output may be missed because simulating B1 produces 0 

instead of X at its output, making the input signal in B2 0 instead of X. Since simulating 0 produces 1 on 

B2’s output in symbolic simulation, the X will be missed. However, the source of the problem is actually in 

partition 1, and the X-problem will be caught when verifying partition 1. After the engineer fixes the 

problem in B1, the X-problem in B2 will also be fixed. 

In general, smaller blocks can reduce the runtime of each partition, but more false negatives will be 

produced and more partitions need to be checked. So this is a trade-off. If for some reason one does not 

wish to further split a block but performance issues remain, our next innovation, temporal partitioning, can 

be applied. 

4.3  Innovation 3: Temporal Partitioning 

Temporal partitioning creates checkpoints during the reset sequence and then executes formal analysis 

in intervals. This name is originated from the observation that formal analysis of the sequence is partitioned 

based on simulation time. The process of X-analysis after temporal partitioning is shown in Fig. 3. We first 

execute symbolic simulation to a checkpoint and then perform formal X-analysis. At the checkpoint, if X is 

found, designers check whether the X is acceptable. If the X is not acceptable, then a bug is found. If it is 

acceptable, then the non-X value in the register should not cause any problem in the future, so we can 

simply execute logic simulation to the current checkpoint. Next, we perform abstraction [1] by injecting 

new symbols for all the registers that have Xs at the current checkpoint, switch to symbolic simulation, and 

then simulate to the next checkpoint. X-analysis is then performed again at the next checkpoint. This 

process repeats until the whole reset sequence is verified. 

 

Figure 3: Verification flow after temporal partitioning. 

The main advantage of temporal partitioning is that formal X-analysis can be performed for a shorter 

period of time because new symbols are used to replace the Xs in registers at each checkpoint, thus 

reducing the complexity of symbolic simulation. However, since such Xs are now free symbols instead of 

complex Boolean expressions, temporal partitioning creates under-constrained conditions for the next 

interval. As a result, no bugs will be missed, but there may be false alarms. 

For better performance, it is recommended to consider signal activities when deciding the length of 

intervals. A heuristic is that shorter intervals can be used during hardware reset due to its high activities. 

Longer intervals can then be used for software sequences to reduce false alarms since most Xs have been 

removed by hardware reset. It is possible that the number of false alarms can increase to an unacceptable 

level if each interval becomes too short. However, we did not observe this problem in our case studies. 

4.4  Case Studies 

We applied the eXact methodology to a six-million gate high-speed tester design. The reset sequence 

was composed of two phases of hardware reset and two stages of software reset. The hardware sequences 

were only a couple cycles long. The first stage of software reset (called mapping sequence) was 

approximately 20,000 cycles long, and the second stage (called pre-pattern sequence) was roughly 500 

cycles long. The total length of the sequence was approximately 40,000 cycles long because some cycles 

are idle. The whole sequence was prepared by the hardware team and approximately 70% of design 

registers were initialized. We used C++ to generate the transaction level stimulus for the sequence, and 



5 

used a SystemC interface to pass the stimulus to the Verilog testbench. Since the sequence was too long 

and the design was too large for brute-force formal X-analysis, partitioning was necessary. To select 

appropriate block sizes for partitioning, we first picked a block and ran symbolic simulation
2
 for a few 

cycles. Next, we measured the runtime of symbolic simulation. If the runtime seems to be reasonable (at 

least 20 cycles per hour in our case), then the block is suitable for formal X-analysis. In this work, we 

found that 200K-300K is the maximum number of gates that symbolic simulation can handle efficiently, 

but this number may vary for different designs. Due to the tight schedule of the verification engineer, we 

did not verify all the blocks but only applied our methodology to five blocks that the engineer was 

interested in. The characteristics of the blocks are shown in Table 1. 

Table 1: Characteristics of design blocks. 

Block Register Count Gate Lines Description 

 Name RTL Gate-level Count of RTL  

alp_pcm 367 9247 30632 7802 Program counter memory which stores 

vectors used for digital sourcing. 

alp_mpg 6739 109882 224986 42937 Memory pattern generator which can 

automatically generate test pattern for 

memory testing. 

alp_cmem_eng 3614 13148 44291 35115 Capture memory engine which can store 

captured data. 

alp_per_gen 331 5324 11011 5636 Period generator which can generate user 

period according to users requirement. 

alp_lvm 15481 89848 234938 28523 Large vector memory which can be used as 

extra storage for vector data, capture data, 

etc. 

4.4.1  X-Analysis Results 

After we selected the blocks to verify, we chose checkpoint intervals according to simulation speed. 

Since the verification engineer was more interested in the correctness of the pre-pattern sequence, we 

performed X-analysis only on the sequence. The X-analysis results of the blocks are shown in Table 2. As 

our results show, most blocks could be verified without temporal partitioning. However, block 

alp_cmem_eng took more than one week to run without temporal partitioning and did need 129 

checkpoints. Apparently, it is impractical to handle such complex X-analysis problems using brute-force 

methods, showing that our methodology is useful for handling realistic designs. 

                                                           
2
 Our experiments were performed using a commercial symbolic simulator called Insight [9] running on 

a Linux server farm. The machines in the server farm have Quad-Core Xeon processors with 

frequency ranging from 2.93 to 3.16 GHz, and they have memory between 16 GByte and 128 GByte. 
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Table 2: Verification results using eXact methodology. 

Block # CKPTs. Runtime Checked/Total # Found # Investigated 

Name   Registers(%) Xs Xs 

alp_pcm 1 7hr5m 79.0% 2 2 

 58 6m 75.3% 43  

alp_mpg 1 49hr12m 90.3% 793 71 

alp_cmem_eng 129 53hr16m 85.3% 848 69 

alp_per_gen 1 45m 98.8% 4 4 

 2 29m 93.8% 16  

 4 3m 94.1% 18  

 8 3m 93.1% 18  

alp_lvm 1 4hr49m 78.5% 1 1 

 2 4hr30m 78.5% 3  

From Table 2, we can see that X-problems still exist in the design even though the design has been 

heavily verified. The percentage of registers with X-problems, however, is small, suggesting that our 

under-constrained methods did not create large amounts of false alarms. It is interesting that a relatively 

large number of Xs were found in alp_mpg and alp_cmem_eng after software reset. More analysis showed 

that most Xs were from a couple modules that were instantiated several times. After ruling out repeated 

ones, only 71 Xs in alp_mpg and 69 Xs in alp_cmem_eng really needed to be checked. The designers 

quickly pinpointed 5 registers for further inspection in in alp_mpg, and they turned out to be false alarms 

due to temporal partitioning. The rest of the Xs were mostly real but would not affect design correctness. 

In Column 4 of Table 2 we provide the percentage of registers that need to be checked according to the 

method in Section 4.1. By focusing only on the registers without X in logic simulation, we can reduce the 

number of registers that need to be analyzed. Take alp_mpg for example, we only need to analyze 90.3% of 

the 6739 RTL word-level registers. If gate-level simulation were to be used for X-analysis, 109,882 

bit-level registers needed to be checked, which would be even more inefficient.  

To examine the effect of different number of checkpoints on X-analysis runtime and the number of 

false alarms, we varied the number of checkpoints for alp_per_gen, block alp_lvm and alp_pcm. As shown 

in Table 2, when the number of checkpoints increased, the runtime for X-analysis decreased, but the 

number of Xs increased. This trend is consistent with what we predicted earlier — shorter intervals will 

make X-analysis faster, but it could create more false alarms. 

To check how well our methodology can handle long traces, we also tried running alp_per_gen for the 

whole reset sequence that was almost 40,000 cycles long. Without temporal partitioning, we could not 

finish symbolic simulation in a week. By partitioning the trace to 19,148 checkpoints, X-analysis of the 

whole trace finished in 43 hours and 51 minutes, and 32 Xs were reported. This result shows that the 

temporal partitioning technique scales well to long traces. 

4.4.2  Bugs Found and Discussions 

In order not to miss bugs, the designer has to check all the found Xs and decide which Xs should be 

analyzed. In our case study, designers found that most Xs were OK but they were not aware of the Xs in the 

past. In our experience, approximately 20% of the Xs were false alarms caused by under-constrained 

conditions, 70% of the Xs did not need to be analyzed because the designers knew right away that the Xs 

were not important, and only 10% of the Xs needed to be further analyzed. With our methodology, we 

found 3 bugs that escaped initial verification in block alp_per_gen. 

The found X-problems were serious because they could break the data bus and left the chip in a 

nondeterministic state. This may eventually break all the functionality associated with the chip. Once the 

bug was found, however, fixing the problem was easy – we routed the reset signal to the problematic 

register. 

Actually, one of the bugs was also found by a traditional method that compares gate-level and RTL 

simulation results. However, it took the verification team more than one man-month to set up gate-level 

simulation due to numerous transactors used in behavioral and RTL code. In addition, delta delay caused a 
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lot of race conditions, which was very difficult to solve in gate-level netlists. Once simulation mismatches 

between RTL and gate-level designs were found, it took the team another man-month to find the 

corresponding RTL code that caused the X-problem. However, it only took us three hours to set up the 

environment for each block, and the X-problem was found within 3 minutes. In addition to the huge 

reduction in bug-finding time, fixing the bug is also considerably easier because our methodology works 

earlier in the design cycle at the RTL. Therefore, the designer can easily identify the problematic code and 

fix it. 

5  Issue 2: Fixing Gate-Level Logic Simulation When Xs Exist 

In the previous case study we showed that too few Xs due to X-optimism at the RTL can cause 

problems. In this section we present two other problems, including their solutions, caused by too many Xs 

in gate-level simulation. The first one is called reset controllability analysis and the second one is called 

reconvergence path analysis. 

5.1  Reset Controllability Analysis 

In addition to Xs due to uninitialized registers, here Xs are caused by a physical synthesis optimization 

that moves the reset signal of a register to its input cone, as shown in Fig. 4. One advantage of this 

approach is that a smaller cell can be used because the reset signal is no longer required. In addition, 

routing may become easier since the reset signal does not need to reach the register. However, this 

optimization causes problems in gate-level simulation due to X-pessimism. As Fig. 4 shows, “1 AND X” 

becomes X and erroneously makes the output of the NOR gate X instead of 0. This X will propagate to the 

rest of the design and corrupt the whole simulation. We call this problem “reset controllability”. 

  

    

(a)                                        (b) 

Figure 4: (a) Original netlist. (b) Netlist after optimization where the reset signal has been moved to Reg2’s 

input cone. When reset is 1, input to Reg2 should be 0 even though Reg1 is X. However, due to 

X-pessimism in logic simulation, Reg2 will be X instead of 0. On the other hand, symbolic simulation uses 

a symbol (s1) to represent the value of Reg1 and can produce the correct result: 0. (Simulated values for 

each wire are shown using logic value/symbolic value). 

Our solution is that given a gate-level netlist and a reset sequence, we seek to find all registers whose 

values are Xs in logic simulation but should really be 0 or 1. In other words, these registers are dominated 

by a reset signal and should be X-free after reset. To deal with the problem, we reuse the SAT instance 

developed for X-analysis with one change: in the SAT instance built for X-analysis, only the Xs in registers 

are replaced with new symbols. To perform reset controllability analysis, we replace all the symbols 

injected at primary inputs that are not part of the reset sequence with new symbols as well. A miter is then 

built to check whether the target register can have different values. If a solution can be found, then the 

target register can be both 0 and 1 and is not controlled by a reset signal. Otherwise, the target register is 

proven to be constant. 

Using this technique, we can accurately identify registers with false Xs after reset. However, to fix 

gate-level logic simulation, it is necessary to determine what the constant values are so that the correct 

values can be assigned to the registers. To solve this problem, we replace the symbols in the symbolic 

traces with random values and run logic simulation to evaluate the symbolic traces. The correct values of 

registers can then be obtained. By replacing the Xs with those correct values, we can fix gate-level 

simulation problems. 



8 

Note that the solution above has to build a SAT instance for each registers and can be slow. To improve 

the performance of reset controllability analysis, we propose a new scheme that can reduce the number of 

SAT calls, and it works as follows. We first execute symbolic simulation to generate the symbolic trace of 

the target register. Next, we perform random logic simulation on the symbolic trace several times to see if 

the register value is a constant. If not, then we have already found a counterexample which proves that the 

target register is not dominated by a reset signal. If all the random patterns produce the same register value, 

we use the SAT solver to check whether the register can have a different value. If no solution can be found, 

then the register is controlled by the reset signal and the simulated value is its constant value. Compared 

with the original algorithm, the number of SAT calls can be greatly reduced due to the use of random 

simulation. In addition, since we no longer need to duplicate the design and build miters, the SAT instances 

are much smaller, leading to shorter SAT solving time. 

We applied our reset controllability analysis method to a multi-million gate communication chip with a 

reset sequence that is 74 cycles long. Our experiments were conducted on a Linux workstation with 2 GHz 

Quad-Core Xeon processors and 48 GByte memory. To solve scalability issues, we partitioned the design 

into 204 blocks. 266 registers that had Xs in logic simulation but should be X-free were identified. Gate 

level simulation was then fixed by replacing the Xs in the identified registers with their correct values. It is 

noteworthy to mention that using the scheme that builds a SAT instance for each register, runtime was 12 

hours and 45 minutes. But if we perform random simulation on the symbolic traces first, runtime was 

reduced to 5 hours and 46 minutes. This result demonstrates the significant performance gain of our new 

approach for reset controllability analysis. This flow is currently in commercial production use and has 

solved the gate-level simulation problems for several chips. 

5.2  Reconvergence Path Analysis 

Reconvergence path analysis is used to repair gate-level simulation problems when the logic in real 

hardware can eliminate the Xs. The problem can be illustrated using the circuit shown in Fig. 5. Note that 

this is a simplified version and the problem we observed from the real design was far more complex. In the 

circuit, Reg1 is initialized to 1 while Reg2 remains X. According to the simulation result at the RTL which 

happened to be correct, the designer expected to see Reg2 becoming 0 two cycles later. However, due to 

X-pessimism, Reg1 and Reg2 both become Xs in gate-level logic simulation at the next cycle as shown in 

Fig. 5(a). 
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(a)                                     (b)  

Figure 5: Example for reconvergence path analysis. Reg1 is initialized to 1 while Reg2 remains X. (a) In 

logic simulation both Reg1 and Reg2 become Xs at the next cycle. (b) In symbolic analysis, symbol s1 is 

injected to represent the X, and all the symbols are eliminated three cycles later due to reconvergence path. 

To address this problem, we reuse the controllability analysis algorithm and check the Xs to see if they 

are constant. Unlike reset controllability analysis that only checks the Xs at the reset cycle, here we need to 

check the Xs for multiple cycles after reset because Xs may be eliminated a few cycles later. As shown in 

Fig 5(b), our formal X-analysis can correctly prove that Reg2 becomes 0 two cycles later. To repair logic 

simulation, we force the constant values to the registers at the same cycle when they are proven to be 

X-free. 

Our reconvergence path analysis has been applied to a multi-million gate communication chip from a 

different company. We analyzed approximately 400 blocks using 46 hours and 2206 false Xs were found. 

Most runtime (38 hours) was consumed by three of the blocks that were data-path and could be skipped. As 

a result, analyzing the blocks that the designers were interested in only required 8 hours. The X problems 

that we found were also found by the verification team, but it took the team a month to identify the problem 

and find a solution. With eXact, the problem was found in a day after the tool was set up. 

6  Conclusions 

The dramatic increase in design complexity requires more aggressive optimizations that may create 

design nondeterminism (X) problems. Due to X-optimism and X-pessimism, such problems cannot be 

handled accurately by logic simulation, so designers’ simulation waveforms may be incorrect. Although 

formal methods can handle the Xs correctly, scalability remains an issue. In this work we proposed the 

eXact methodology that leverages the accuracy of formal methods to augment logic simulation so that 

designers can trust their waveforms again. We applied this methodology to solve three industrial design 

problems, including finding unexpected Xs after reset and removing incorrect Xs in gate-level logic 

simulation. The results show that we can find and fix X-problems accurately and efficiently. 
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