
Optimizing Blocks in an SoC Using
Symbolic Code-Statement Reachability Analysis

Hong-Zu Chou†, Kai-Hui Chang‡, and Sy-Yen Kuo†

†Electrical Engineering Department, National Taiwan University, Taipei, Taiwan
‡Avery Design Systems, Inc., Andover, MA, USA

sykuo@cc.ee.ntu.edu.tw

Abstract— Optimizing blocks in a System-on-Chip (SoC) cir-
cuit is becoming more and more important nowadays due to the
use of third-party Intellectual Properties (IPs) and reused design
blocks. In this paper, we propose techniques and methodolo-
gies that utilize abundant external don’t-cares that exist in an
SoC environment for block optimization. Our symbolic code-
statement reachability analysis can extract don’t-care conditions
from constrained-random testbenches or other design blocks to
identify unreachable conditional blocks in the design code. Those
blocks can then be removed before logic synthesis is performed
to produce smaller and more power-efficient final circuits. Our
results show that we can optimize designs under different con-
straints and provide additional flexibility for SoC design flows.

I. INTRODUCTION

The use of Intellectual Properties (IPs) in System-on-Chip (SoC)

circuits has become a common design practice recently to accelerate

the circuit design process. Design blocks are also often reused in new

chips to reduce design effort. However, these approaches may leave

unnecessarily large design blocks in the final chip because the blocks

may be over-provisioned with respect to the target functionality. As a

result, power efficiency and performance are degraded. To solve such

problems, optimizations should be applied to remove the unused logic

from the reused design blocks. Such optimizations can be achieved by

utilizing don’t-care conditions that exist due to the surrounding envi-

ronment. The use of external instead of internal don’t-cares makes the

optimization of IPs quite different from traditional synthesis optimiza-

tions. Although techniques exist to utilize such optimization opportu-

nities [3], these techniques work on the gate level only. Not being able

to work on the higher level code greatly limits the optimization power

of such techniques because removing an unused high-level code block

may eliminate thousands of gates after synthesis. In addition, the cur-

rent trend is to move synthesis toward higher levels of abstraction [7].

Therefore, not being able to handle higher-level code will become a

serious limitation of such gate-level techniques in the future.

In this work we develop techniques and methodologies to utilize

abundant external don’t-cares that exist in an SoC design for IP op-

timization. Our techniques focus on optimizing high-level code di-

rectly; therefore, they can scale to larger designs and the optimiza-

tions are easier to be verified by designers. In addition, working on

the higher-level code can detect many optimization opportunities that

are difficult to be identified at the gate level. Our first contribution is a

new algorithm that utilizes high-level symbolic simulation to perform

formal code-statement reachability analysis and then use the reacha-

bility report to identify and remove redundant design code in order

to produce smaller netlists after synthesis. Our approach is consider-

ably different from traditional reachability analysis in that our target

is design code instead of design states, and it is different from code-

coverage analysis because we can formally prove code reachability.

Our second contribution is an innovative synthesis construct called

sym wait that can accelerate symbolic simulation. This construct first

verifies the latency of different symbolic traces and then merges them

into one trace, thus improving the runtime of symbolic simulation and

reducing its memory usage. We utilized our reachability analysis tech-

niques in our third contribution, a methodology that uses existing ver-

ification environments or surrounding blocks for circuit optimization.

This methodology reuses constrained-random testbenches prevalent

in circuit verification to model the surrounding environment of the de-

sign under optimization, and then it performs circuit optimization by

exploiting the don’t-cares that exist in the testbench. Since different

input constraints can produce different circuit optimization opportuni-

ties, engineers can use different testbench constraints to model differ-

ent software requirements, and then apply our techniques to perform

hardware/software co-optimization and co-exploration to find the best

trade-off between software design and hardware complexity. Note that

the testbench can be under-constrained and thus is often easy to de-

velop. In the extreme case, even if the inputs are completely random,

we can still identify dead code in the design and reduce design size.

As our empirical evaluation in Section V shows, different sets of

instructions exhibit different optimization opportunities and can pro-

duce different sizes of optimized netlists. For example, when 16 types

of instructions are allowed in DLX, only 3.3% cell count reduction

can be achieved. But if the software only uses 8 types of instructions,

14.7% reduction can be achieved. These results suggest that our solu-

tions can optimize IPs in an SoC effectively.

The rest of this paper is organized as follows. In Section II we

briefly review existing verification methods and provide necessary

background. Techniques to perform synthesis optimizations using

high-level symbolic simulation are presented in Section III. In Sec-

tion IV we describe several insights gained during the implementation

of our methodologies and outline how to ensure the correctness of the

optimized circuits. Empirical results are shown in Section V, and Sec-

tion VI concludes this paper.

II. RELATED WORK

In this section we first summarize the benefits and limitations of re-

cent verification techniques, and then briefly describe the characteris-

tics of symbolic simulation. Finally, several techniques for computing

and utilizing don’t-cares are presented.

A. Prevalent Verification Techniques

Verification techniques for hardware designs have been extensively

investigated over the past decades [1]. Among the verification meth-

ods that exist today, logic simulation using pre-defined or constrained-

random patterns is the most commonly used. However, there are sev-

eral known limitations such as incomplete corner-case coverage. To

overcome the limitations of simulation-based verification, formal ver-

ification techniques have been developed, such as model checking and

reachability analysis [9, 17]. Formal verification tools exploit mathe-

matical methods and offer more comprehensive verification compared

to simulation-based methods. However, formal tools often have scala-

bility issues; in addition, writing assertions and constraints to describe
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the intended behavior of the design can be challenging. Therefore,

simulation-based techniques still remain prevalent nowadays. One

major advantage of our techniques is that we can reuse the testbenches

developed for simulation-based verification for circuit optimization,

thus eliminating the need to write new code to model the environment.

B. Symbolic Simulation

Symbolic simulation is a formal verification method that is easier

to use than other formal methods since it can work with traditional

simulation-based methodologies. The difference between logic and

symbolic simulation is that logic simulation only simulates scalar in-

puts, while symbolic simulation allows the use of Boolean variables,

or symbols, as input values. Therefore, symbolic simulation produces

Boolean expressions (also called symbolic traces) instead of scalar

values as outputs. Since each symbol represents arbitrary values, sym-

bolic simulation can handle all possible input patterns simultaneously.

While most symbolic simulators are restricted to the gate level,

RTL symbolic simulation has become popular recently due to sev-

eral unique advantages over other methods that we will analyze in

detail in Section III-B. One such work is by Kolbl et al. [11, 12].

Their approaches focus on how to handle RTL Verilog constructs con-

taining delay and array structures in a BDD-based symbolic simula-

tor. Since BDD can explode quickly, modern symbolic simulators use

other logic representations and call backend solvers when necessary

[5]. Sunkari et al.. [16] also proposed a word-level symbolic simula-

tor; they address the issues on how to accurately evaluate events that

mutually trigger each other.

C. Don’t-Cares in Logic Synthesis

Don’t-Cares (DCs) play an important role in the field of logic syn-

thesis because they provide additional flexibility for Boolean reason-

ing and optimization. DCs can be classified into two types: con-

trollability and observability don’t-cares. Controllability Don’t-Cares

(CDCs) occur when certain values of the subnetwork can never be pro-

duced under any legal primary input values, and Observability Don’t-

Cares (ODCs) occur when the values of subnetwork do not affect any

primary output.

Espresso [15] is one of the most well-known Boolean minimization

tools which can synthesize and optimize truth tables with DCs. Re-

cently, many studies have been proposed to accurately and efficiently

compute don’t-care values in synthesis applications [18, 19]. In ad-

dition, SAT-based techniques for achieving better scalability and per-

formance have also been developed [13, 22]. As the article by Ranjan

et al. [14] pointed out, handling don’t-care states through high-level

formal verification can provide additional benefits in synthesis and

verification. However, most existing work that utilizes DCs focuses

on the gate-level, which cannot be applied to high-level synthesis di-

rectly. In addition, few studies focus on how external DCs should be

encoded and utilized. To address such problems, several techniques

have been proposed recently [3, 6].

Note that handling don’t-cares at the RTL using logic simulation

is often inaccurate due to X-pessimistic and X-optimistic characteris-

tics [2, 21]. Therefore, mismatch between RTL and gate-level netlists

could occur. One solution for such a problem is to model the X using

a symbol, and then employ symbolic simulation to accurately handle

X-propagation at the RTL [6].

III. CIRCUIT OPTIMIZATION USING

CONSTRAINED-RANDOM TESTBENCH

The objective of our work is to propose a methodology that uti-

lizes the unique proving power provided by high-level symbolic sim-

ulation to automatically identify external don’t-cares encoded in ex-

isting constrained-random testbenches for logic optimization. In this

section, we first formulate the problem and then perform a detailed

analysis on why RTL symbolic simulation is more suitable than other

formal methods for our methodology. Next, we propose a novel

technique which uses symbolic simulation to perform code-statement

reachability analysis that can utilize the external don’t-cares implic-

itly encoded in the testbenches. Finally, we illustrate the whole flow

of our methodology.

A. Problem Formulation

The main objective of our synthesis optimization is to reduce the

sizes of synthesized netlists by identifying RTL code statements that

become redundant due to don’t-care conditions encoded in the test-

bench. This optimization problem is formulated as follows. Given

a design containing N conditional code blocks and a constrained-

random testbench that can generate all sets of possible input patterns,

we seek to remove unused blocks and produce a smaller RTL design

based on the given inputs. This objective is guaranteed not to change

the design behavior because the removed code is proven to be un-

reachable under the given inputs. Note that in our formulation, the

input patterns can be either properly-constrained or under-constrained

according to different requirements as long as all legal inputs can be

generated. Even if no testbenches exist, we can still utilize part of the

block that feeds into the block under optimization as the testbench, as

we will show in Section III-D.

B. Analytical Study of Symbolic Simulation

In this subsection we perform an analytical study of high-level sym-

bolic simulation and explain why it is more suitable for our optimiza-

tion methodology than other formal methods. The most prominent

difference between high-level symbolic simulation and other formal

methods is that it is intrinsically a combination of software and hard-

ware verification techniques. In particular, it is similar to hardware-

based methods in that it generates Boolean expressions to describe the

functions between design variables. Therefore, it is easy to maintain

functional correctness of the hardware design during our optimization

process. On the other hand, it also traces the execution of code state-

ments like software verification methods, thus allowing the utilization

of don’t-cares at the RTL. Take Figure 1(a) for example, hardware

methods convert the code to a gate-level netlist as shown in Figure

1(b) for analysis. While the netlist faithfully captures the logic rela-

tionship among variables a, b, i1 and i2, it is more difficult to handle

the #1 delay that may exist in testbenches and the $display message

that can be useful for debugging. Although software symbolic simu-

lation is able to execute the $display statement, it has trouble handling

the delay and the event-trigger constructs due to the sequential na-

ture of software program execution. Symbolic simulation combines

the best of both worlds so it can generate precise Boolean expres-

sions as shown in Figure 1(c), as well as show the $display messages

when symbolic simulation executes those code statements (S3 and

S5). Note that in Figure 1, we use subscript to represent the time that

a symbol is generated, and we assume the execution of S1 is at time

0. Subscript “s” denotes the initial value of the variable.

High-level symbolic simulation and other gate-level based formal

methods have many differences. It is noteworthy to mention that

reachability analysis in gate-level techniques typically operates on

complex state transition diagrams. Synthesis optimization algorithms

then identify unreachable states and change state encoding to reduce

the number of logic gates [10, 20]. One limitation of gate-level state

optimization is that it is difficult to map the optimizations back to

the RTL for designers’ review when states are not preserved, mak-

ing verification more difficult. On the other hand, high-level sym-

bolic simulation can perform code statement reachability analysis in

designs/testbenches. Therefore, it is much simpler for designers to

trace the changes.
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(a) always @(cond, i1, i2) begin

S1: if (cond) begin

S2: a = i1;

S3: $display(“Important debugging message”);

end else

S4: #1 a = i2;

S5: $display(“Execution finished”); end

S6: always @(a) b =∼ a;

(b)

i1
i2 0

1
cond

a b

(c) a0 = casecond( (cond@0) – 0: a@s, 1: i1@0)

b0 = casecond( (a@s == a@0) – 0: ∼ a@0, 1: b@s)

a1 = casecond( (cond@0) – 0: i2@1, 1: i1@0)

b1 = casecond( (a@0 == a@1) – 0: ∼ b@0, 1: ∼ a@1)

Fig. 1. Example of high-level symbolic simulation: (a) RTL code; (b)

gate-level netlist; (c) symbolic trace of variables a and b, where a@s and b@s

denote initial values of variables a and b, and a@1 is the value of a at time 1.

C. Code Statement Reachability Analysis

Code statement reachability analysis is a technique that performs

an exhaustive exploration of reachable code statements. Unlike state-

based reachability analysis commonly used in hardware verification

and synthesis, high-level symbolic simulation provides capability to

perform software-like statement reachability analysis. Specifically,

each conditional code block in high-level symbolic simulation is

treated as a branch which involves one or more statements that will

always be executed under the same condition. To identify whether a

conditional code block can be reached or not, we utilize the formal na-

ture of symbolic simulation to evaluate all possible values of variables

involved in the conditions to execute those statements. The advantage

of utilizing reachability analysis at the RTL for design optimization is

twofold. (1) A few lines of RTL code can be synthesized into numer-

ous gates. By identifying unreachable code statements at the RTL and

removing them, we can potentially remove thousands of gates simulta-

neously. (2) Unlike traditional hardware optimization techniques that

utilize unreachable states to optimize sequential elements only, our

code-statement reachability analysis can also identify redundant code

statements that will be mapped into combinational logic.

Although the exhaustive nature of symbolic simulation allows us

to explore all the paths to reach each conditional block, keeping track

of all the symbolic conditions to enter the block is still a non-trivial

task. One major reason is that hardware design languages include se-

mantics to model hardware behavior like events and delays. These

semantics allow the execution of a code segment to be triggered under

numerous reasons by some code that may seem to be unrelated to the

code segment itself. To handle these semantics, we modify the event-

driven symbolic simulation algorithm to make sure we can correctly

keep track of the symbolic conditions when entering each conditional

block. The modified algorithm for symbolic code-statement reacha-

bility analysis is shown in Figure 2. In the algorithm, an event can

be a delay or a signal change condition that triggers the execution of

certain code blocks. Variable curr sym cond saves the symbolic con-

dition when executing the code statement. The variable is updated

when entering or leaving a conditional block, as shown in lines 4-8.

If a new event needs to be generated, we save the current symbolic

condition to the event’s sym cond field. In this way, all the code seg-

ments triggered by the event will have the correct symbolic condition.

To perform statement reachability analysis, we use SAT solvers to

check whether curr sym cond in line 5 is satisfiable or not. This is dif-

ferent from other work on symbolic simulation [11] which uses BDDs

to encode all symbolic conditions thus no SAT calling is necessary. If

curr sym cond is satisfiable, we mark the conditional block as reach-

able. After simulating all the required cycles, if a conditional block is

never reachable, then we report the block as unreachable. Note that

1 event = event queue.pop();

2 curr sym cond = event.sym cond;

3 while execute statement triggered by event
4 if statement is a conditional block with condition cond
5 curr sym cond &= cond;

6 do not execute statment if curr sym cond is proven to be 0;

7 else if leaving conditional block with condition cond
8 restore curr sym cond by removing cond as constraint;

9 else if a new event nevent needs to be generated

10 nevent→sym cond = curr sym cond;

11 event queue.add(nevent);
12 statement = statement.next;

Fig. 2. Pseudo code of symbolic code statement reachability analysis.

in symbolic simulation, if the symbolic condition is unsatisfiable, then

we can prune the simulation by not executing the conditional block,

thus reducing overall runtime and memory use. As a result, perform-

ing reachability analysis may not decrease the performance of sym-

bolic simulation significantly.

Sometimes designers use Xs to explicitly tell the synthesis tools to

treat certain input combinations as don’t-cares so that the code can be

optimized. For example, it is common to see code that assigns Xs to

a variable in the default branch of a select/case statement. To support

this usage in our reachability analysis, whenever an X is assigned to a

variable, we replace the X with a symbol. In this way, if the X does

affect the reachability of a conditional block, the symbolic condition to

enter the block will become satisfiable and the block will be marked

reachable. The ability to correctly handle Xs is one reason why the

reachability analysis technique described earlier cannot be replaced by

traditional code-coverage analysis performed using logic simulation:

due to X optimism and pessimism, logic simulation cannot correctly

handle such Xs and may produce incorrect reachability reports.

D. Overall Flow of Our Methodology

Since constrained-random testbenches are often readily available

for most designs, we reuse them for reachability analysis and syn-

thesis optimizations. The flow of our methodology is shown in Fig-

ure 3. First, for those variables which are assigned random values in

the constrained-random testbench (e.g., $random in Verilog), replace

$random with symbols. Next, we perform code statement reachability

analysis for T cycles. In this way, symbols are propagated to the de-

sign, and symbolic traces for conditional statements can be produced

under the constraints. After performing reachability analysis using

techniques described in Section III-C, a report is produced for code

reachability, and each code statement is identified as either reachable

or unreachable. Since symbolic simulation can evaluate all possible

(constrained) values for inputs, unreachable code statements are seen

as redundant and can be removed from the design. Finally, we exe-

cute traditional logic synthesis tools to produce the optimized netlist.

In our methodology, CDCs in the symbolic conditions created by the

constrained-random testbench are utilized for design optimization.

Netlist

Symbolic reachability analysis
1) Replace $random with symbols
2) Code statement reachability analysis

Remove 
unreachable code

Logic 
synthesis

DesignConstrained-random 
testbench

Reachability report

Optimized design

Fig. 3. Flow of synthesis optimization using symbolic code statement

reachability analysis.
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Even if constrained-random testbenches do not exist, our technique

can still be used for circuit optimization in an SoC environment, and

it works as follows. Suppose that the inputs of block B come from

block A, we can extract all or part of the logic in block A that fans

out to block B. Next, we apply pure random inputs to the extracted

logic and use it as a testbench to optimize block B. In this way, we can

optimize IP cores in SoC designs even if constrained testbenches do

not exist. As Chayut [4] points out, this methodology is desirable in

SoC designs because it allows synthesis optimizations to work across

block boundaries.

Symbolic simulation can evaluate all possible values simultane-

ously; however, it is still bounded in nature. Hence, additional condi-

tions need to be considered to ensure the correctness of the optimized

circuit. More discussions on how to verify the optimized design are

provided in Section IV-C.

IV. IMPLEMENTATION INSIGHTS AND

OPTIMIZATION CORRECTNESS

For large designs, symbolic traces can be very complex and formal

analysis can be challenging. In particular, events and delays that are

common in testbenches and RTL designs can create numerous sym-

bolic traces, all under different conditions or delays, making symbolic

simulation inefficient. To solve this problem, we propose two refine-

ments in this section to improve the performance of symbolic reacha-

bility analysis. We then describe how to ensure the correctness of the

designs optimized by our methodology.

A. Combining Logic and Symbolic Simulation for

Reachability Analysis

Logic simulation has been widely used in code coverage analy-

sis. With random inputs, logic simulation can efficiently determine

the reachability for the conditional blocks. To leverage the strengths

of both logic and symbolic simulation, we first perform logic simu-

lation for a period of time to identify the conditional blocks that are

reachable. Typically, logic simulation is performed until code cov-

erage saturates. Next, we use symbolic simulation to check all con-

ditional blocks that are still not reachable. Since logic simulation is

extremely fast, this method can greatly reduce the use of formal anal-

ysis and achieve better performance. Note that formal analysis is still

necessary to ensure the correctness of reachability analysis since logic

simulation may not hit all possible reachable code statements due to

its random nature.

B. Merging Symbolic Traces

Like all formal methods, the comprehensive nature of symbolic

simulation also has its drawbacks. Most notably, it has to keep

track of code execution under all possible conditions. For instance,

it has to execute the “if” statement in Figure 1(a) twice, one with

“cond = true” and one with “cond = false”, generating two differ-

ent simulation traces. If no delay exists in either branch, then the

trace explosion problem can be alleviated by merging both traces af-

ter executing the “if” statement to produce a Boolean expression like

“a = cond?i1 : i2” for the execution of future code starting at S5.

However, when delays exist, merging becomes unlikely and the exe-

cution traces have to be split afterwards. Such splitting can produce a

large number of traces, all under different conditions or delays, mak-

ing symbolic simulation inefficient. Since delays appear frequently

in RTL designs or testbenches, such a phenomenon may become the

bottleneck of our optimization.

To solve this problem, we propose a new construct called sym wait
to reduce the complexity of symbolic simulation. The construct can be

inserted by the designer to appropriate code locations to merge differ-

ent traces and greatly simplify symbolic simulation. When sym wait
is executed by symbolic simulation, it keeps track of all the symbolic

traces and verifies whether or not all the traces reach sym wait within

a time period. If not, then sym wait flags an error to indicate that it

cannot be used to merge the traces. Otherwise, it merges the symbolic

traces into one and continues symbolic simulation using the merged

trace. The reason why we verify the latency of traces first before

merging them is to make sure all the traces can finish in the current

cycle or transaction so that we can merge them. Otherwise, reachabil-

ity analysis may be incorrect.

A more detailed description of sym wait is shown in Figure 4. It

determines whether all code execution paths, all under different con-

ditions, can reach the specified code statement within a timeout period

(denote as To). Specifically, the time difference between the first and

the last simulation paths that reach sym wait should not be larger than

To. Once this property holds, the execution traces can be merged,

creating only one trace that should go forward as if the delay does

not exist. Otherwise, the verification construct is violated. The time-

out limitation used here provides additional checks for latency-related

problems in testbenches or designs. More specifically, this construct

verifies that the latency of all traces is within an acceptable range be-

fore merging them to ensure the correctness of the merging.

1 Construct sym wait(To)
2 if(all path sequences from reset state under

3 all conditions can reach this statement within To)

4 merge different Boolean expressions at this point;

5 else
6 generate a illegal path sequence that reproduces the problem;

Fig. 4. Syntax and semantics of sym wait.

Figure 5 is a simple illustration to show how sym wait works on

the design described in Figure 1. Suppose that sym wait is added be-

fore statement S5 and timeout is 0. When sym wait is first reached

by one of the branches (S5, cond=true), it will block the execution

until all possible branches reach this statement or timeout occurs. In

this case, the other branch reaches S5 at time 1, thus violation occurs.

Similarly, suppose that as long as statement S5 can be reached be-

fore time 1 under all conditions (e.g., cond is constrained to 1), the

property of timeout is held, and only one trace will go forward. As

shown in our empirical results, this technique can significantly reduce

the complexity of symbolic simulation.

Time 1Time 0
S2

(cond == true)

S4
(cond == false)

S1

S3
(cond == true)

S5
(cond == true)

S6
(cond == true), 

@a

S5
(cond == false)

S6
(cond == false),

@a

sym_wait (0)

Fig. 5. Statement execution diagrams to illustrate how sym wait checks the

time-out of statement reachability.

C. Ensuring the Correctness of Optimizations

Although symbolic simulation can evaluate all possible values si-

multaneously, it can only ensure the correctness and the completeness

of verification within the simulated time period. One way to solve this

problem is to use “proof by induction” that is described in detail in

[8]. The basic idea behind this method is that if the state in the last

simulated cycle is a subset of any state before the last cycle, then the

properties verified to hold for the simulated cycles will hold forever.

In reachability analysis, if the condition mentioned above is satisfied,

then all the unreachable code statements are guaranteed to be unreach-

able. By performing state reachability analysis, we can determine the

number of cycles that should be performed in order to satisfy the con-

dition that allows “proof by induction” to work.

9C-2

790



TABLE I

CHARACTERISTICS OF BENCHMARKS.

Design Description #Cond. blocks #Cells Timing slack

DLX 5-stage pipeline CPU, MIPS architecture 274 13902 2659 ps

Alpha 5-stage pipeline CPU, 64-bit registers/instructions/datapaths 175 31381 3269 ps

Sometimes it may be difficult to simulate enough cycles to make

the condition required by proof-by-induction hold. To address this

problem, one can underconstrain the initial state by making some of

the state bits unconstrained. Although under-constraining the design

may result in loss of optimization opportunities because unreachable

code may be flagged as reachable, this is not an issue since our goal

is design optimization, not design verification. Another approach to

solve this problem is to generate constraints for the inputs as described

in [3]. As long as the inputs comply with the generated constraints,

design correctness can also be guaranteed.

V. EXPERIMENTAL RESULTS

In this section, we first measure the effect of sym wait using a

Crossbar switch design, and then perform optimization on several

benchmarks, including a DLX processor and an Alpha processor. The

characteristics of these benchmarks are listed in Table I. Our experi-

ments were performed using a commercial symbolic simulator called

Insight [24] running on a Linux workstation with 2 GHz Quad-Core

Xeon processors and 40 GByte main memory. The SAT engine we

used is ABC [23] compiled in 64-bit mode. A state-of-the-art com-

mercial logic synthesizer is used to synthesize the original RTL and

the code optimized by our techniques. As a result, the experimental

results can faithfully show what designers will benefit from our meth-

ods in their design flows.

A. Case study: Crossbar Switch

The purpose of this case study is to show how sym wait can im-

prove symbolic simulation analysis. Crossbar switches can be found

in many designs including routers, network-on-chip circuitry and

communication chips. Our switch contains two input ports and two

output ports. It can forward a packet from any input to any output

based on its priority bit and a round-robin arbitration scheme. Note

that in the testbench that generates data packets for verification, many

execution branches will be created in symbolic simulation because

data length can be random, and this behavior makes symbolic simula-

tion less efficient.

We prepared a testbench that connects a driver and a receiver

through a FIFO and used this configuration to evaluate the effective-

ness of sym wait. As we have shown in Section IV-B, numerous sim-

ulation traces have to be produced to track all the packets due to dif-

ferent payload sizes that require different numbers of cycles to trans-

mit. However, sym wait can merge those traces again. In this case

study, we found that when sym wait is applied, runtime reduced from

1525 seconds to 442 seconds, achieving 71% reduction. Furthermore,

memory consumption reduced by 44% due to branch merging.

B. Cast Study: DLX Processor

In this case study, we developed five testbenches to customize

the DLX implementation provided by the BugUnder Ground (BUG)

project from Michigan [25]. For each testbench, only certain specified

instructions are allowed. In this way, the logic for the unused instruc-

tion set can be removed to reduce the size and power consumption of

the new design. To ensure the correctness of customized design, DLX

was initialized to the state in which all registers were symbols, and it

was simulated symbolically for 14 cycles. Since all possible states can

be reached in 7 cycles under this configuration, it is guaranteed that

the state in the 14th cycle is a subset of the state at the 7th cycle; thus

ensuring the correctness of the optimized design.

In the ALU control block, for synthesis optimization, the designer

assigned X to the default branch of the case statement that selects the

ALU operation. Since some instructions, like BEQ, does not match

any case condition, the control signal of the ALU may have any value

for such instructions depending how the synthesis tool optimizes the

case statement. Our reachability analysis correctly handled this X sit-

uation and showed that all ALU operations are necessary, while logic

simulation only matches the default branch. This observation shows

that symbolic reachability analysis can produce much more accurate

results than logic simulation. Since the output of ALU will not be used

by the BEQ instruction, this is not a design bug. However, our anal-

ysis shows that unpredictable ALU operation may be selected by the

BEQ instruction, and this behavior may consume unnecessary power.

In our experiments we removed this design flaw before synthesis.

The results after optimization are shown in Table II. When fewer

numbers of instruction types are allowed, more code blocks become

unreachable, and more optimization can be achieved. Note that most

storage devices are always reachable in this design; therefore, even

when only the NOP operation is allowed, there are still 122 reachable

blocks. In this case study, the maximum reduction of gate count is

81.4% and the minimum one is 3.3%. In addition, the total timing

slack is also reduced due our optimizations, leading to a better per-

formance and lower power consumption. It is observed that runtime

of these testbenches does not have an apparent trend. The reason is

that when more instructions are allowed, more code blocks will be-

come reachable. Since satisfiable problems are often faster to solve

than unsatisfiable problems, SAT solvers can spend less time solv-

ing the symbolic conditions. However, more reachable blocks also

mean more symbolic simulation must be done because more condi-

tional blocks will be entered. Therefore, the runtime does not show an

obvious trend.

C. Case Study: Alpha Processor

In this section, we customize an Alpha design using symbolic

reachability analysis. Similar to the previous case study, we use the

Alpha implementation by the BugUnder Ground (BUG) project from

Michigan [25]. We prepared six testbenches to constrain the instruc-

tions allowed to be used by the Alpha processor and the results are

presented in Table III. It is observed that if only instruction NOP is

allowed, a lot of code blocks can be removed and the produced netlist

is much smaller. As the number of instruction types increases, more

code blocks can be reached, thus the gate-count reduction ratio is de-

creased. It is interesting to note that after optimizing the last testbench

that has 17 instructions, there was slight increase in gate count. The

reason is that removing code may not always reduce synthesized gate

count if synthesis tools do not handle don’t-cares that became avail-

able in the new code wisely. But the general trend shows that we can

indeed simplify the design. In addition to gate-count reduction, we

also observed that timing slack was also reduced, which shows that

our methodology can improve both the size and the performance of

SoC designs. These results also show that one can find a trade-off

between software and hardware for the best system performance.

To better illustrate this idea, we also tried a different set of instruc-

tions that does not include MULQ and the results show that 34.7%

gate-count reduction can be achieved. Therefore, if MULQ is never or

rarely used in the program that will be executed on the Alpha proces-

sor, engineers can remove this instruction from the supported instruc-

tion list. However, if multiplication is used often in the program, then
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TABLE II

DLX OPTIMIZATION THROUGH CODE STATEMENT REACHABILITY UNDER DIFFERENT COMBINATIONS OF INSTRUCTIONS.

Instruction allowed (DLX) Run time #Cond. blocks #Cells Reduction ratio Timing slack

NOP 1 sec 122 2426 81.4% 1248 ps

ADD, ADDI, NOP 100 min 148 7793 68% 1563 ps

ADD, ADDI, SW, LW, NOP 103 min 165 9240 29.4% 1606 ps

ADD, ADDI, SW, LW, SRL, SLL, SRA, BEQ, NOP 97 min 176 11170 14.7% 2306 ps

ADD, ADDI, AND, ANDI, XOR, SLT, SLTI, SW, LW, SRL, SLL, SRA,

BEQ, BNE, J, JAL, NOP
138 min 208 12661 3.3% 2596 ps

TABLE III

ALPHA OPTIMIZATION THROUGH CODE STATEMENT REACHABILITY UNDER DIFFERENT COMBINATIONS OF INSTRUCTIONS.

Instruction allowed (Alpha) Run time #Cond. blocks #Cells Reduction ratio Timing slack

NOP 1 sec 98 1339 95.7% 747 ps

ADDQ, MULQ, CMPEQ, NOP 25 min 120 27941 10.9% 3240 ps

ADDQ, MULQ, CMPEQ, LDQ, STQ, NOP 24.5 min 127 28300 9.8% 3280 ps

ADDQ, MULQ, CMPEQ, LDQ, STQ, JMP, BSR, SRL, SLL, SRA, NOP 18.5 min 142 30265 3.7% 3268 ps

ADDQ, SUBQ, MULQ, CMPEQ, CMPULE, LDQ, STQ, JMP, RET,

BSR, SRL, SLL, SRA, AND, BIS, XOR, NOP
15.5 min 149 32195 -2.6% 3298 ps

ADDQ, SUBQ, CMPEQ, CMPULE, LDQ, STQ, JMP, RET, BSR, SRL,

SLL, SRA, AND, BIS, XOR, NOP
15.5 min 146 20476 34.7% 1848 ps

this instruction must be preserved. This example shows how engineers

can use our techniques to perform hardware/software co-optimization

and co-exploration.

VI. CONCLUSIONS

In this work, we proposed techniques and methodologies that uti-

lize abundant external don’t-cares which exist in a System-on-Chip

(SoC) design for optimization. More specifically, we utilize exist-

ing testbench or other design blocks to search for such don’t-cares

and perform symbolic code-statement reachability analysis to iden-

tify code blocks that become redundant due to the don’t-cares. Since

our goal is design optimization instead of verification, the testbenches

can be under-constrained and thus is easy to develop. Furthermore,

our approach is guaranteed not to change design behavior because the

removed code will never be executed under the inputs constraints. Be-

cause our approach focuses on high-level code directly, it can scale to

larger designs and can identify many optimization opportunities that

are difficult to be detected at the gate level. Our empirical results using

DLX and Alpha show that our symbolic reachability analysis can op-

timize designs in SoC environments, both in terms of gate count and

timing slack. In addition, our methodology allows hardware/software

co-optimization and co-exploration to find the best trade-off between

hardware and software complexity.
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