
A Tag-Augmented Temporal Logic Checker
Kai-Hui Chang, Wei-Ting Tu, Yi-Jong Yeh, and Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
sykuo@cc.ee.ntu.edu.tw

Abstract
Many circuit designs need to follow some temporal

logic assertions. However, it was hard to express and
verify them in the past. Therefore a temporal logic
checker, called Sequence, is proposed in this paper. It
provides some Verilog system tasks for the users to write
assertions in their designs directly. A PSL-to-Sequence
converter is also provided so that assertions written in
the standard PSL (Property Specification Language) can
be verified by the Sequence checker. In this paper, two
new concepts, tag and thread, are introduced to help
users attach data to their temporal assertions and
provide more functionalities than previous temporal
logic checkers. The importance of tags and threads to
temporal logic checker is like enhancing a regular
expression parser to context-free. A benchmark
comparison with a commercial product is also given.

1. Introduction
Many circuit designs exhibit temporal behaviors. In

the past, there was no good solution to express rules for
these temporal behaviors and it was difficult to verify
them. As the complexity of circuits increases, it becomes
more and more important to find a way to express and
verify these temporal logic rules. There are several
vendors providing various solutions, such as OpenVera
from Synopsis and E from Verisity. Recently, the IBM
Sugar has been adopted as a formal specification
language called PSL [1]. However, no connection with
the underlying simulator is proposed.

In this paper, a new way to express temporal logic
rules in Verilog HDL is proposed and is called
“Sequence.” Sequence can be used as a bridge between
PSL and simulators with a PSL-to-Sequence converter,
but it can also be used directly to write temporal
assertions in Verilog HDL. Two new concepts in
temporal logic, thread and tag, are also introduced in
Sequence. Compared with some state-machine based
temporal logic checkers [2][3], thread and tag enhance
the power of temporal logic checkers significantly. Their
importance is like enhancing a parser from regular
expression to context-free [4]. This paper describes the
syntax of Sequence and how it is implemented. A
comparison between Sequence and a commercial PSL
assertion checker is also given.

2. Thread, Tag and Sequence

2.1 Terminology

Assertion: A statement that a given property is
required to hold and a directive to verification tools to
verify that it does hold.

Clock: It is used in synchronous Sequence checking
to sample signals. It can be “$tb_posedge(clock)” for the
positive edge of the clock, “$tb_negedge(clock)” for the
negative edge of the clock, or “clock” for both edges. If
“0” is used, then it means asynchronous Sequence
checking. For synchronous checking, an event variable is
always sampled at the clock edge. For asynchronous
checking, if the event variable is 1 when the Sequence is
triggered, or becomes 1 after the Sequence is triggered,
then it is considered a successful event.

Event: An event has no time duration, and is either
successful or failed. There are two ways that an event can
be generated: From a Verilog variable or from a
Sequence. For a Verilog variable, an event occurs if its
value is 1, becomes 1, or is sampled 1 at the specified
clock edge. An event from Verilog variable is always a
successful event. For a Sequence, an event is generated
after that Sequence is finished. If no rule specified in that
Sequence is violated, a successful event will be generated.
If any rule is violated, a failed event will be generated.

Handle: Every Sequence task returns a handle. The
handle is always 32-bits in width and can be used as an
argument in other Sequence tasks. In this way,
complicated temporal logic assertions can be described.

Sequence: An assertion written in Verilog system
tasks purposed in this paper. A Sequence is a series of
events with timing, order and/or tag constraints. A
Sequence will generate a failed or successful event when
it finishes, and can be used as an event in other
Sequences.

Spawn a thread: When the first event of a Sequence
occurs, a new thread is generated for further checking of
this temporal logic assertion. This process is called
“spawn a thread.”

Thread: A partially checked Sequence. It has its own
status and represents a temporal logic stream.

Tag: Data that is associated to a variable and carried
by a Sequence thread.

Trigger: The start of a Sequence checking.

2.2 Thread
Once a Sequence checker is triggered, there may be

several streams of events being checked at the same time.
For example, if events “a b c d e” are expected to occur
in sequence, and the events occur in the order “a b c d a
b”, then there will be two possible event streams that
satisfy the rule, each has its own state. One has events “a
b c d” checked, and the other has events “a b” checked. If
“e” occurs, the first Sequence stream will finish

successfully, but the partially checked “a b” will be left
intact. Later if “c d e” occur, the Sequence stream will
generate a successful event when it finishes. See Figure 1
for detailed description about the example.

Figure 1. Example Event Stream.

Since there may be multiple streams of the same
assertion flowing concurrently, there should be a way to
represent these streams so that they can be handled. In
Sequence, these streams are represented by threads.
Every thread has its unique ID, and the thread can be
manipulated by it. This concept is similar to the threads
in an operating system.

2.3 Tag
Since there may be several threads spawned from the

same Sequence, it will be very useful if some data can be
carried by the thread and be reused later. For example, if
we want to express the following temporal rule, we have
to pick some value and carry it with the temporal flow.

Event2 should occur after event1, and variable V
should have the same value when either event occurs.

In this case, we should pick the value of V when
event1 occurs and compare it with variable V when
event2 occurs.

This is why Sequence tag is necessary. A tag is a
data handler in Sequence that can be used to attach a data
with a Sequence thread. It is always associated with a
variable. It can be used to save data to a Sequence or
load data from a Sequence. It can also be used to qualify
an event.

2.4 Analysis of Thread and Tag
With thread and tag, the power of temporal logic

checker is enhanced significantly. Take an example from
the language theory [5] first. In a regular expression
parser, the following sentences are allowed, where
superscript denotes number of times the alphabet should
repeat:

A1B2, A*B, AB*
However, the following sentence is not allowed:

AnBn

It is because a regular expression parser does not
have the ability to “remember” how many times an

alphabet has repeated. To parse AnBn, a context-free
parser must be used.

The same situation exists in the temporal logic
checker. If no information is allowed to be carried with
the logic flow, then the following assertion can be
checked, where superscript denotes number of times the
event should occur:

A1B2, A*B, AB*
However, the following assertion cannot be checked:

AnBn

It is because if “n” is not saved with the temporal
stream, the number of times that B should repeat will not
be known. With tag, such an assertion is possible.

Another usage of tag is to qualify an event with the
value of another variable. For example, we may want to
express the following assertion: (Subscript means the
value of variable V. For example, A1 means only if V is 1
when A occurs should this event be considered legal.)

AnBn

It means that when A occurs, if V’s value is “n”, then
only when B occurs and V’s value is also n should this
assertion be valid.

Such an assertion is common in real designs. For
example, assume there is a bus bridge with two sides. If
one side, called bus A, writes something to an address on
the other side, called bus B. Then only the transaction on
bus B that matches the address of the transaction on bus
A is the correct transaction we are looking for. For
example, if on bus A data is written to address 0x10, then
the write transaction to address 0x10 on bus B is correct,
while the transaction to address 0x20 is not. It is one of
the AnBn examples. Split-completion on a PCI-X or PCI-
Express bus is another example. See Figure 2 for a more
detailed description about how AnBn is checked..

Figure 2. AnBn Example.

Thread and tag also provide the bridge for Sequence
to interact with auxiliary Verilog code. With these
augmented code, some complicated assertions that cannot
be expressed by Sequence alone can be written and
checked.

2.5 Sequence Usage
A complete Sequence definition has three blocks:

Assertion definition, Sequence trigger, and result
handling. Assertions are written in the Verilog tasks
provided by Sequence. Sequence trigger is done by the

A occurs

V = n

Tag Save Tag Compare

Initial

Valid

Tag = n

V = m

Tag = n

B occurs

Fail

n = m

n != m

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

Thread1: Succeeds Thread2

Step1: a occurs

Step2: e occurs

New thread is
spawned

$tb_seq_trigger task. It has two arguments: The first one
is the Sequence handle returned in assertion block, and
the second one is the result variable. After a Sequence is
triggered, the check starts immediately. If the assertion
fails, bit 1 of the result variable toggles. If the assertion
succeeds, bit 0 toggles. Result handling should be based
on the result variable. A typical usage of Sequence is
given in Figure 3.

Figure 3. Sequence Usage.

CTL (branching-temporal logic) [6], defined as OBE
(Optional Branching Extension) in PSL, are supported in
Sequence by reporting both failure and success of the
assertion. The “all path” operator is supported by
detecting failures of the assertion. If any thread fails in
the assertion, then the all path operator fails. The “some
path” operator is supported by detecting successes of the
assertion. If any thread succeeds in the assertion, then the
some path operator holds.

3. Sequence Implementation

3.1 Data Structures
Sequence has two main data structures: Sequence

and Thread. Sequence represents the assertion that the
user writes, and thread is created dynamically during run-
time. The data saved in a tag is also carried by thread. An
example of Sequence structure is given in Figure 4.

Figure 4. Example Sequence.

3.2 Algorithms
A Sequence thread has four stages in its life cycle:

Setup, evaluate, execute and finalize. In setup, the thread
is created. In evaluate, the thread waits for events to
evaluate itself. In execute, the program counter is
advanced to the next event. In finalize, some clean-up is
done and the thread is destroyed.

A Sequence thread has two states: Active and
inactive. In active state, the thread is waiting to be
evaluated. In inactive state, the thread is not waiting for
any event and is waiting for its child thread to resume
itself. The life cycle of thread is given in Figure 5. In the
figure, PC means Program Counter, which is the
execution state of the thread.

Figure 5. Thread Execution Algorithm.

4. PSL to Sequence Converter

4.1 Converter Usage
A PSL to Sequence converter is provided as the

bridge between PSL and Sequence. With the converter,
PSL assertions can be converted to a Verilog module that
can be included in the design directly. The inputs of the
module are the signals we are monitoring. Clock and
reset ports are also included to control the behavior of the
verification module.

An example of the verification module and the flow
to generate it is given in Figure 6.

PSL:
always ({signal_a} |->
{{signal_b;signal_b}[*3..5];signal_c}) @(posedge
clock);

Verfication module:

Setup Evaluation

Execution

Finalize

Success

Inactive

Fail

SetupFinalize

…

Child thread

Success/Fail

Event occur

PC�Next =
event

Resume

PC�Next =
null

PC�Next =
Sequence

Events

Events

Seq_threads

Clock: clk

…

Range: null
Seq_threads

Clock: clk

…

Range: (2,4)

e2 e3

e4

h1= $tb_seq_range($tb_posedge(clk), $tb_range(2, 4), e4);
h2= $tb_seq($tb_posedge(clk), e1, e2, h1, e3);

e1

Sequence
(h2)

Sequence
(h1)

// Sequence Definition Block
handle1= $tb_seq_range(clock, $tb_range(1, 2),
event1);
handle2= $tb_seq(clock, event1,handle2);
// Sequence Trigger Block
$tb_seq_trigger(handle2, result_variable);
// Result Handling Block
always @(result_variable[1])

$display(“Assertion failure”);
always @(result_variable[0])

$display(“Assertion Success”);

module Verification_unit(clk, rst, signal_a, signal_b,
signal_c);
Sequence definition
…
endmodule
Design module:
`include Verification_unit
module Design(…);
…
Verification_unit Assertions(clk, rst, signal_a, signal_b,
signal_c);
endmodule

Figure 6. PSL-to-Sequence Converter.

4.2 Benchmarks and Comparisons
Besides Sequence, Cadence NC-Verilog also offers

ABV (Assertion-Based Verification) that supports PSL
language [7]. It can simulate design with PSL assertions
internally or externally. Compared with NC ABV,
Sequence is more powerful. First, Sequence reports
assertion success as well as failure, while NC only
reports failure. Second, the performance of Sequence is
better than NC ABV. A benchmark is given below. The
Sequence code is produced by the converter.

The benchmark is done on Redhat 7.2. The version
of NC- Verilog is 5.00-b006, and the CPU is Pentium 4
1.6G.

PSL:
always({signal_b}|->{signal_a[*REPEAT_TIMES]})
@(posedge clk);
Note: REPEAT_TIMES is the number of times that
signal_a repeats.
Sequence:
h1 = $tb_seq_range_start($tb_posedge(clk), 1,signal_a);
h2 = $tb_seq_repeat(REPEAT_TIMES - 1,h1);
h3 = $tb_seq_now(signal_a);
h4 = $tb_seq($tb_posedge(clk), h3, h4);
h5 = $tb_seq($tb_posedge(clk), signal_b);
h6 = $tb_seq_imply0(h5, h4);
Stimulus:
Signal_a is always 1.
Signal_b period is 80ns, initilized to 0.
Clock period is 10ns, initialized to 0.

Sequence NC-ABV
REPEAT_TIMES Running Time

(sec)
Running Time
(sec)

1 0.280 0.270
10 0.610 0.480
100 3.260 5.730
1000 35.780 399.580
10000 276.610 34479.180

4.3 Discussion
Repeat is chosen as the benchmarks because it is the

most time consuming property. In the benchmark, new
threads are spawned at every positive clock edge. It is the
reason the benchmark takes so long to simulate. From the
benchmark, it can be seen that the time complexity of
Sequence remains linear, while NC is exponential. Even
with large numbers of threads, the performance of
Sequence is still extraordinary.

5. Conclusion
A temporal logic checker, called Sequence, is

proposed in this paper. Its syntax, usage and
implementation are also described. Compared with
commercial products, its performance is outstanding.
Two innovative concepts, tag and thread, are also
introduced in this paper. These two features enrich the
power of temporal logic checkers and enable the user to
write more complex temporal assertions than before. Its
importance is like enhancing a regular expression parser
to context-free.

6. References
[1] Accellera, Property Specification Language

Reference Manual, Version 1.0, Jan. 2003
[2] Koji Ara and Kei Suzuki, A proposal for transaction-

level verification with component wrapper language,
Design, Automation and Test in Europe Conference
and Exhibition, 2003

[3] Ajay J. Daga and William P. Birmingham, A
symbolic-simulation approach to the timing
verification of interacting FSMs, Computer Design:
VLSI in Computers and Processors, Proceedings on
1995 IEEE International Conference, 1995

[4] Charles N. Fisher and Richard J. LeBlanc, Jr.,
Crafting a Compiler with C, The
Benjamin/Cummings Publishing Company, Inc.,
1991

[5] Noam Chomsky, The Logical Structure pf Linguistic
Theory, The University of Chicago Press, 1985

[6] L. Lamport, Sometimes is sometimes “not never” –
on the Temporal Logic of Programs, Proc. 7th ACM
Symposium on Principles of Programming
Languages, Jan. 1980

[7] Cadence, Writing and Using Assertions in Cadence’s
Dynamic Assertion-Based Verification for NC-
Verilog Version 4.1, May. 2002

Sugar
…

Verification
module
…

Verification
module
…

Design
module
…
…
…

end module

convert

include

